{"title":"Adaptive fuzzy generalized predictive control based on Discrete-Time T-S fuzzy model","authors":"Jérôme Mendes, R. Araújo, F. Souza","doi":"10.1109/ETFA.2010.5641301","DOIUrl":null,"url":null,"abstract":"The paper presents an adaptive fuzzy predictive control based on discrete-time Takagi-Sugeno (T-S) fuzzy model. The proposed controller is based on Generalized predictive control (GPC) algorithm, and a discrete-time T-S fuzzy model is employed to approximate the unknown nonlinear process. To provide a better accuracy in identification of unknown parameters of the model, it is proposed an on-line adaptive law which ensures that the tracking error remains bounded. The stability of closed-loop control system is proved/studied via the Lyapunov stability theory. To validate the theoretical developments and to demonstrate the performance of the proposed control is simulated as nonlinear system a laboratory-scale liquid-level process. The simulation results show that the proposed method has a good performance and disturbance rejection capacity in industrial process.","PeriodicalId":201440,"journal":{"name":"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2010.5641301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
The paper presents an adaptive fuzzy predictive control based on discrete-time Takagi-Sugeno (T-S) fuzzy model. The proposed controller is based on Generalized predictive control (GPC) algorithm, and a discrete-time T-S fuzzy model is employed to approximate the unknown nonlinear process. To provide a better accuracy in identification of unknown parameters of the model, it is proposed an on-line adaptive law which ensures that the tracking error remains bounded. The stability of closed-loop control system is proved/studied via the Lyapunov stability theory. To validate the theoretical developments and to demonstrate the performance of the proposed control is simulated as nonlinear system a laboratory-scale liquid-level process. The simulation results show that the proposed method has a good performance and disturbance rejection capacity in industrial process.