Long Memory Affine Term Structure Models

A. Golinski, P. Zaffaroni
{"title":"Long Memory Affine Term Structure Models","authors":"A. Golinski, P. Zaffaroni","doi":"10.2139/ssrn.1787037","DOIUrl":null,"url":null,"abstract":"We develop a Gaussian discrete time essentially affine term structure model with long memory state variables. This feature reconciles the strong persistence observed in nominal yields and inflation with the theoretical implications of affine models, especially for long maturities. We characterize in closed-form the dynamic and cross-sectional implications of long memory for our model. We explain how long memory can naturally arise within the term structure of interest rates, providing a theoretical underpinning for our model. Despite the infinite-dimensional structure that long memory implies, we show how to cast the model in state space and estimate it by maximum likelihood. An empirical application of our model is presented.","PeriodicalId":369344,"journal":{"name":"American Finance Association Meetings (AFA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Finance Association Meetings (AFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1787037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We develop a Gaussian discrete time essentially affine term structure model with long memory state variables. This feature reconciles the strong persistence observed in nominal yields and inflation with the theoretical implications of affine models, especially for long maturities. We characterize in closed-form the dynamic and cross-sectional implications of long memory for our model. We explain how long memory can naturally arise within the term structure of interest rates, providing a theoretical underpinning for our model. Despite the infinite-dimensional structure that long memory implies, we show how to cast the model in state space and estimate it by maximum likelihood. An empirical application of our model is presented.
长记忆仿射期限结构模型
我们建立了一个具有长记忆状态变量的高斯离散时间本质仿射期限结构模型。这一特征调和了名义收益率和通货膨胀中观察到的强烈持久性与仿射模型的理论含义,特别是对于长期期限。我们以封闭的形式描述了长记忆对我们模型的动态和横截面影响。我们解释了长期记忆在利率期限结构中是如何自然产生的,为我们的模型提供了理论基础。尽管长记忆意味着无限维结构,但我们展示了如何在状态空间中投射模型并通过最大似然估计它。最后给出了该模型的一个实证应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信