THE GROUP $ K_3$ FOR A FIELD

A. S. Merkur’ev, A. Suslin
{"title":"THE GROUP $ K_3$ FOR A FIELD","authors":"A. S. Merkur’ev, A. Suslin","doi":"10.1070/IM1991V036N03ABEH002034","DOIUrl":null,"url":null,"abstract":"This paper gives a description of the torsion and cotorsion in the Milnor groups and for an arbitrary field . The main result is that, for any natural number with , and the group is uniquely -divisible if . This theorem is a consequence of an analogue of Hilbert's Theorem 90 for relative -groups of extensions of semilocal principal ideal domains. Among consequences of the main result we obtain an affirmative solution of the Milnor conjecture on the bijectivity of the homomorphism , where is the ideal of classes of even-dimensional forms in the Witt ring of the field , as well as a more complete description of the group for all global fields.","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1991V036N03ABEH002034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

This paper gives a description of the torsion and cotorsion in the Milnor groups and for an arbitrary field . The main result is that, for any natural number with , and the group is uniquely -divisible if . This theorem is a consequence of an analogue of Hilbert's Theorem 90 for relative -groups of extensions of semilocal principal ideal domains. Among consequences of the main result we obtain an affirmative solution of the Milnor conjecture on the bijectivity of the homomorphism , where is the ideal of classes of even-dimensional forms in the Witt ring of the field , as well as a more complete description of the group for all global fields.
字段的组$ k_3 $
本文给出了Milnor群和任意域上的挠性和扭性的描述。主要结果是,对于任何自然数,且群是唯一可整除的,如果。这个定理是关于半局部主理想域的扩展的相对群的一个类似希尔伯特定理90的结果。在主要结果的结果中,我们得到了关于同态双射性的Milnor猜想的一个正解,其中是域的Witt环上偶数维形式的类的理想,以及对所有全局域的群的更完整的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信