Replication free rule grouping for packet classification

Xiang Wang, Chang Chen, Jun Li
{"title":"Replication free rule grouping for packet classification","authors":"Xiang Wang, Chang Chen, Jun Li","doi":"10.1145/2486001.2491709","DOIUrl":null,"url":null,"abstract":"Most recent works demonstrate that grouping methodology could bring significant reduction of memory usage to decision-tree packet classification algorithms, with insignificant impact on throughput. However, these grouping techniques can hardly eliminate rule-replication completely. This work proposes a novel rule grouping algorithm without any replication. At each space decomposition step, all rules projecting on the split dimension form the maximum number of non-overlapped ranges, which guarantees the modest memory usage and grouping speed. Evaluation shows that the proposed algorithm achieves comparable memory size with less pre-processing time.","PeriodicalId":159374,"journal":{"name":"Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2486001.2491709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Most recent works demonstrate that grouping methodology could bring significant reduction of memory usage to decision-tree packet classification algorithms, with insignificant impact on throughput. However, these grouping techniques can hardly eliminate rule-replication completely. This work proposes a novel rule grouping algorithm without any replication. At each space decomposition step, all rules projecting on the split dimension form the maximum number of non-overlapped ranges, which guarantees the modest memory usage and grouping speed. Evaluation shows that the proposed algorithm achieves comparable memory size with less pre-processing time.
用于包分类的无复制规则分组
最近的研究表明,分组方法可以显著减少决策树包分类算法的内存使用,而对吞吐量的影响不显著。然而,这些分组技术很难完全消除规则复制。本文提出了一种新的无复制规则分组算法。在每个空间分解步骤中,所有投射到分割维上的规则形成最大数量的非重叠范围,从而保证了适度的内存使用和分组速度。评估表明,该算法以较少的预处理时间获得了相当的内存大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信