Decentralized control of smart grid with fixed and moving loads

P. Khayyer, U. Ozguner
{"title":"Decentralized control of smart grid with fixed and moving loads","authors":"P. Khayyer, U. Ozguner","doi":"10.1109/PECI.2013.6506037","DOIUrl":null,"url":null,"abstract":"Plug-in hybrid electric vehicles (PHEVs), as intermittent loads, create frequency disturbance in power system. The system needs to balance the power generation and demand. However, in regional smart grid systems fed by renewable energy sources and moveable loads, the power transfer through tie line interconnections is strongly coupled with system dynamics. This makes the frequency stability and control process very slow. In this paper, an overlapping decomposition technique of large-scale system control is used to decouple the renewable energy penetrated power system regions. A decentralized controller is then designed to maintain the frequency in a short time. Micro-hydro Simulation results demonstrate a fast frequency control process to regulate the system under input power variation from wind turbine and load from PHEVs.","PeriodicalId":113021,"journal":{"name":"2013 IEEE Power and Energy Conference at Illinois (PECI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Power and Energy Conference at Illinois (PECI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECI.2013.6506037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Plug-in hybrid electric vehicles (PHEVs), as intermittent loads, create frequency disturbance in power system. The system needs to balance the power generation and demand. However, in regional smart grid systems fed by renewable energy sources and moveable loads, the power transfer through tie line interconnections is strongly coupled with system dynamics. This makes the frequency stability and control process very slow. In this paper, an overlapping decomposition technique of large-scale system control is used to decouple the renewable energy penetrated power system regions. A decentralized controller is then designed to maintain the frequency in a short time. Micro-hydro Simulation results demonstrate a fast frequency control process to regulate the system under input power variation from wind turbine and load from PHEVs.
具有固定和移动负荷的智能电网分散控制
插电式混合动力汽车作为间歇性负荷,对电力系统产生频率扰动。该系统需要平衡发电和需求。然而,在由可再生能源和可移动负荷供电的区域智能电网系统中,通过并线互连的电力传输与系统动力学密切相关。这使得频率稳定性和控制过程非常缓慢。本文采用大系统控制的重叠分解技术对可再生能源渗透电力系统区域进行解耦。然后设计一个分散的控制器来在短时间内保持频率。微水力仿真结果表明,在风电机组输入功率变化和插电式混合动力汽车负载变化的情况下,系统具有快速的频率控制过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信