Fast Depth Map Intra Coding Based Structure Tensor Data Analysis

Hamza Hamout, A. Elyousfi
{"title":"Fast Depth Map Intra Coding Based Structure Tensor Data Analysis","authors":"Hamza Hamout, A. Elyousfi","doi":"10.1109/ICIP.2018.8451781","DOIUrl":null,"url":null,"abstract":"As a recent 3D video coding standard, ISO/IEC MPEG and ITU-T Video Coding Experts Group (VCEG) establish 3D-HEVC as the most efficient 3D video coding based on Multiview texture Videos plus Depth maps data format. In 3D-HEVC, depth map intra prediction is a key factor in 3D video coding, in which, the encoder utilizes the conventional intra prediction and depth modeling modes together to improve the depth map coding. This improvement of depth map intra prediction increase the coding efficiency significantly, but result in a dramatic computational complexity load, due to the exhaustive searching for the best intra mode. The increase of the intra coding complexity excludes the 3D-HEVC from real time and real world application. To resolve the aforementioned problem, it's imperative to develop solutions that can reduce the complexity meaningfully. In this work, we propose an efficient depth map intra prediction model decision based on tensor features. The simulation experiments prove that the developed model decreases the computational complexity (38.52%) with no performance losses.","PeriodicalId":147245,"journal":{"name":"International Conference on Information Photonics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2018.8451781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As a recent 3D video coding standard, ISO/IEC MPEG and ITU-T Video Coding Experts Group (VCEG) establish 3D-HEVC as the most efficient 3D video coding based on Multiview texture Videos plus Depth maps data format. In 3D-HEVC, depth map intra prediction is a key factor in 3D video coding, in which, the encoder utilizes the conventional intra prediction and depth modeling modes together to improve the depth map coding. This improvement of depth map intra prediction increase the coding efficiency significantly, but result in a dramatic computational complexity load, due to the exhaustive searching for the best intra mode. The increase of the intra coding complexity excludes the 3D-HEVC from real time and real world application. To resolve the aforementioned problem, it's imperative to develop solutions that can reduce the complexity meaningfully. In this work, we propose an efficient depth map intra prediction model decision based on tensor features. The simulation experiments prove that the developed model decreases the computational complexity (38.52%) with no performance losses.
基于深度图内部编码的结构张量数据快速分析
作为最新的3D视频编码标准,ISO/IEC MPEG和ITU-T视频编码专家组(VCEG)将3D- hevc建立为基于多视图纹理视频加深度地图数据格式的最高效的3D视频编码。在3D- hevc中,深度图内预测是3D视频编码的关键因素,其中编码器利用常规的帧内预测和深度建模模式来改进深度图编码。这种深度图内预测的改进大大提高了编码效率,但由于需要穷极搜索最佳内模式,导致了巨大的计算复杂度负荷。帧内编码复杂度的增加使3D-HEVC无法在实时和现实世界中应用。要解决上述问题,必须开发能够有意义地降低复杂性的解决方案。在这项工作中,我们提出了一种有效的基于张量特征的深度图内预测模型决策。仿真实验证明,该模型在没有性能损失的情况下,降低了38.52%的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信