Scale-space clustering and classification of SAR images with numerous attributes and classes

Yiu-fai Wong, E. Posner
{"title":"Scale-space clustering and classification of SAR images with numerous attributes and classes","authors":"Yiu-fai Wong, E. Posner","doi":"10.1109/ACV.1992.240325","DOIUrl":null,"url":null,"abstract":"Describes application of scale-space clustering to the classification of a multispectral and polarimetric SAR image of an agricultural site. After polarimetric and radiometric calibration and noise cancellation, the authors extracted a 12-dimensional feature vector for each pixel from the scattering matrix. The algorithm was able to partition without supervision a set of unlabeled vectors from 13 selected sites, each site corresponding to a distinct crop, into 13 clusters. The cluster parameters were then used to classify the whole image. The classification map is much less noisy and more accurate than those obtained by hierarchical rules. The algorithm can handle variabilities in cluster densities, cluster sizes and ellipsoidal shapes.<<ETX>>","PeriodicalId":153393,"journal":{"name":"[1992] Proceedings IEEE Workshop on Applications of Computer Vision","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings IEEE Workshop on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACV.1992.240325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Describes application of scale-space clustering to the classification of a multispectral and polarimetric SAR image of an agricultural site. After polarimetric and radiometric calibration and noise cancellation, the authors extracted a 12-dimensional feature vector for each pixel from the scattering matrix. The algorithm was able to partition without supervision a set of unlabeled vectors from 13 selected sites, each site corresponding to a distinct crop, into 13 clusters. The cluster parameters were then used to classify the whole image. The classification map is much less noisy and more accurate than those obtained by hierarchical rules. The algorithm can handle variabilities in cluster densities, cluster sizes and ellipsoidal shapes.<>
具有众多属性和类别的SAR图像的尺度空间聚类与分类
描述了尺度空间聚类在农业站点的多光谱和偏振SAR图像分类中的应用。在极化和辐射校正和噪声消除后,作者从散射矩阵中提取每个像素的12维特征向量。该算法能够在没有监督的情况下,从13个选定的位点(每个位点对应一个不同的作物)将一组未标记的向量划分为13个簇。然后使用聚类参数对整个图像进行分类。与分层规则得到的分类图相比,该分类图噪声小,精度高。该算法可以处理簇密度、簇大小和椭球形状的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信