GPU-Trident: Efficient Modeling of Error Propagation in GPU Programs

Abdul Rehman Anwer, Guanpeng Li, K. Pattabiraman, Michael B. Sullivan, Timothy Tsai, S. Hari
{"title":"GPU-Trident: Efficient Modeling of Error Propagation in GPU Programs","authors":"Abdul Rehman Anwer, Guanpeng Li, K. Pattabiraman, Michael B. Sullivan, Timothy Tsai, S. Hari","doi":"10.1109/SC41405.2020.00092","DOIUrl":null,"url":null,"abstract":"Fault injection (FI) techniques are typically used to determine the reliability profiles of programs under soft errors. However, these techniques are highly resource- and time-intensive. Prior research developed a model, TRIDENT to analytically predict Silent Data Corruption (SDC, i.e., incorrect output without any indication) probabilities of single-threaded CPU applications without requiring FIs. Unfortunately, TRIDENT is incompatible with GPU programs, due to their high degree of parallelism and different memory architectures than CPU programs. The main challenge is that modeling error propagation across thousands of threads in a GPU kernel requires enormous amounts of data to be profiled and analyzed, posing a major scalability bottleneck for HPC applications.In this paper, we propose GPU-TRIDENT, an accurate and scalable technique for modeling error propagation in GPU programs. We find that GPU-TRIDENT is 2 orders of magnitude faster than FI-based approaches, and nearly as accurate in determining the SDC rate of GPU programs.","PeriodicalId":424429,"journal":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"1756 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC41405.2020.00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Fault injection (FI) techniques are typically used to determine the reliability profiles of programs under soft errors. However, these techniques are highly resource- and time-intensive. Prior research developed a model, TRIDENT to analytically predict Silent Data Corruption (SDC, i.e., incorrect output without any indication) probabilities of single-threaded CPU applications without requiring FIs. Unfortunately, TRIDENT is incompatible with GPU programs, due to their high degree of parallelism and different memory architectures than CPU programs. The main challenge is that modeling error propagation across thousands of threads in a GPU kernel requires enormous amounts of data to be profiled and analyzed, posing a major scalability bottleneck for HPC applications.In this paper, we propose GPU-TRIDENT, an accurate and scalable technique for modeling error propagation in GPU programs. We find that GPU-TRIDENT is 2 orders of magnitude faster than FI-based approaches, and nearly as accurate in determining the SDC rate of GPU programs.
GPU- trident: GPU程序中误差传播的有效建模
故障注入技术通常用于确定软错误下程序的可靠性概况。然而,这些技术非常耗费资源和时间。之前的研究开发了一个模型,TRIDENT,可以在不需要fi的情况下分析预测单线程CPU应用程序的静默数据损坏(SDC,即没有任何指示的错误输出)概率。不幸的是,TRIDENT与GPU程序不兼容,由于它们的高度并行性和不同的内存架构比CPU程序。主要的挑战是,在GPU内核中对数千个线程中的错误传播进行建模需要对大量数据进行分析和分析,这对HPC应用程序构成了主要的可伸缩性瓶颈。在本文中,我们提出了GPU- trident,这是一种精确且可扩展的技术,用于建模GPU程序中的误差传播。我们发现GPU- trident比基于fi的方法快2个数量级,并且在确定GPU程序的SDC速率方面几乎同样准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信