Using integer sets for data-parallel program analysis and optimization

Vikram S. Adve, J. Mellor-Crummey
{"title":"Using integer sets for data-parallel program analysis and optimization","authors":"Vikram S. Adve, J. Mellor-Crummey","doi":"10.1145/277650.277721","DOIUrl":null,"url":null,"abstract":"In this paper, we describe our experience with using an abstract integer-set framework to develop the Rice dHPF compiler, a compiler for High Performance Fortran. We present simple, yet general formulations of the major computation partitioning and communication analysis tasks as well as a number of important optimizations in terms of abstract operations on sets of integer tuples. This approach has made it possible to implement a comprehensive collection of advanced optimizations in dHPF, and to do so in the context of a more general computation partitioning model than previous compilers. One potential limitation of the approach is that the underlying class of integer set problems is fundamentally unable to represent HPF data distributions on a symbolic number of processors. We describe how we extend the approach to compile codes for a symbolic number of processors, without requiring any changes to the set formulations for the above optimizations. We show experimentally that the set representation is not a dominant factor in compile times on both small and large codes. Finally, we present preliminary performance measurements to show that the generated code achieves good speedups for a few benchmarks. Overall, we believe we are the first to demonstrate by implementation experience that it is practical to build a compiler for HPF using a general and powerful integer-set framework.","PeriodicalId":365404,"journal":{"name":"Proceedings of the ACM SIGPLAN 1998 conference on Programming language design and implementation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGPLAN 1998 conference on Programming language design and implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/277650.277721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

Abstract

In this paper, we describe our experience with using an abstract integer-set framework to develop the Rice dHPF compiler, a compiler for High Performance Fortran. We present simple, yet general formulations of the major computation partitioning and communication analysis tasks as well as a number of important optimizations in terms of abstract operations on sets of integer tuples. This approach has made it possible to implement a comprehensive collection of advanced optimizations in dHPF, and to do so in the context of a more general computation partitioning model than previous compilers. One potential limitation of the approach is that the underlying class of integer set problems is fundamentally unable to represent HPF data distributions on a symbolic number of processors. We describe how we extend the approach to compile codes for a symbolic number of processors, without requiring any changes to the set formulations for the above optimizations. We show experimentally that the set representation is not a dominant factor in compile times on both small and large codes. Finally, we present preliminary performance measurements to show that the generated code achieves good speedups for a few benchmarks. Overall, we believe we are the first to demonstrate by implementation experience that it is practical to build a compiler for HPF using a general and powerful integer-set framework.
使用整数集进行数据并行程序分析和优化
在本文中,我们描述了使用抽象整数集框架开发Rice dHPF编译器的经验,Rice dHPF是一种高性能Fortran编译器。我们给出了主要计算划分和通信分析任务的简单而通用的公式,以及关于整数元组集合的抽象操作的一些重要优化。这种方法使得在dHPF中实现全面的高级优化成为可能,并且可以在比以前的编译器更通用的计算分区模型上下文中实现这些优化。该方法的一个潜在限制是,整数集问题的底层类从根本上无法在符号数量的处理器上表示HPF数据分布。我们将描述如何扩展该方法,以便为象征性数量的处理器编译代码,而不需要对上述优化的集合公式进行任何更改。我们通过实验证明集合表示并不是影响小代码和大代码编译时间的主要因素。最后,我们提供了初步的性能测量,以显示生成的代码在一些基准测试中实现了良好的加速。总的来说,我们相信我们是第一个通过实现经验证明使用通用且强大的整数集框架构建HPF编译器是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信