DETERMINATION OF SHAPE PARAMETER IN RBF APPROXIMATION

A. Karageorghis, P. Tryfonos
{"title":"DETERMINATION OF SHAPE PARAMETER IN RBF APPROXIMATION","authors":"A. Karageorghis, P. Tryfonos","doi":"10.2495/be410141","DOIUrl":null,"url":null,"abstract":"We apply a radial basis function (RBF) collocation method for the approximation of functions in two dimensions. The solution is approximated by a linear combination of radial basis functions. The issue of determining the optimal value of the shape parameter is tackled by including it in the unknowns along with the coefficients of the RBFs in the approximation. The resulting nonlinear system of equations is solved by directly applying a standard non-linear solver. The results of some numerical experiments are presented and analysed.","PeriodicalId":208184,"journal":{"name":"Boundary Elements and other Mesh Reduction Methods XLI","volume":"122 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Elements and other Mesh Reduction Methods XLI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/be410141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We apply a radial basis function (RBF) collocation method for the approximation of functions in two dimensions. The solution is approximated by a linear combination of radial basis functions. The issue of determining the optimal value of the shape parameter is tackled by including it in the unknowns along with the coefficients of the RBFs in the approximation. The resulting nonlinear system of equations is solved by directly applying a standard non-linear solver. The results of some numerical experiments are presented and analysed.
RBF近似中形状参数的确定
采用径向基函数(RBF)配置法对二维函数进行近似。解近似为径向基函数的线性组合。确定形状参数的最优值的问题是通过将其与近似中rbf的系数一起包含在未知数中来解决的。所得到的非线性方程组通过直接应用标准非线性求解器来求解。给出了一些数值实验结果并进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信