Fault diagnosis of rod pumping system based on deep conditional domain adaption network

Xiaohua Gu, Fei Lu, Dedong Tang, Guang Yang, Wei Zhou, Jun Peng
{"title":"Fault diagnosis of rod pumping system based on deep conditional domain adaption network","authors":"Xiaohua Gu, Fei Lu, Dedong Tang, Guang Yang, Wei Zhou, Jun Peng","doi":"10.1109/ICCICC53683.2021.9811334","DOIUrl":null,"url":null,"abstract":"The generalization ability of traditional fault diagnosis methods is insufficient. This paper presents a fault diagnosis method of sucker rod pumping system based on deep condition domain adaption network (DCDAN). Firstly, the convolution neural network is used for feature extraction. Then, the weighted maximum mean discrepancy (WMMD) is used to adjust the characteristic distribution of relevant subclasses in different domains to realize the fine-grained domain adaptation of subclasses. At the same time, the fault classification ability of the model is guaranteed by optimizing the classification loss. The results show that this method can improve the generalization performance of the model in the target domain.","PeriodicalId":101653,"journal":{"name":"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICC53683.2021.9811334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The generalization ability of traditional fault diagnosis methods is insufficient. This paper presents a fault diagnosis method of sucker rod pumping system based on deep condition domain adaption network (DCDAN). Firstly, the convolution neural network is used for feature extraction. Then, the weighted maximum mean discrepancy (WMMD) is used to adjust the characteristic distribution of relevant subclasses in different domains to realize the fine-grained domain adaptation of subclasses. At the same time, the fault classification ability of the model is guaranteed by optimizing the classification loss. The results show that this method can improve the generalization performance of the model in the target domain.
基于深度条件域自适应网络的有杆抽油系统故障诊断
传统的故障诊断方法泛化能力不足。提出了一种基于深工况域自适应网络(DCDAN)的有杆抽油系统故障诊断方法。首先,利用卷积神经网络进行特征提取;然后,利用加权最大平均差异(WMMD)调整相关子类在不同域的特征分布,实现子类的细粒度域自适应;同时通过对分类损失的优化,保证了模型的故障分类能力。结果表明,该方法可以提高模型在目标域的泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信