Approximate representation theory of finite groups

L. Babai, K. Friedl
{"title":"Approximate representation theory of finite groups","authors":"L. Babai, K. Friedl","doi":"10.1109/SFCS.1991.185442","DOIUrl":null,"url":null,"abstract":"The asymptotic stability and complexity of floating point manipulation of representations of a finite group G are considered, especially splitting them into irreducible constituents and deciding their equivalence. Using rapid mixing estimates for random walks, the authors analyze a classical algorithm by J. Dixon (1970). They find that both its stability and complexity critically depend on the diameter d=diam(G,S) (S is the set that generates G). They propose a worst-case speedup by using Erdos-Renyi generators and modifying the Dixon averaging method. The overall effect in asymptotic complexity is a guaranteed (n log mod G mod )/sup O(1)/ running time.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The asymptotic stability and complexity of floating point manipulation of representations of a finite group G are considered, especially splitting them into irreducible constituents and deciding their equivalence. Using rapid mixing estimates for random walks, the authors analyze a classical algorithm by J. Dixon (1970). They find that both its stability and complexity critically depend on the diameter d=diam(G,S) (S is the set that generates G). They propose a worst-case speedup by using Erdos-Renyi generators and modifying the Dixon averaging method. The overall effect in asymptotic complexity is a guaranteed (n log mod G mod )/sup O(1)/ running time.<>
有限群的近似表示理论
研究了有限群G表示的浮点操作的渐近稳定性和复杂性,特别是将它们分割成不可约的成分并确定它们的等价性。作者利用随机漫步的快速混合估计,分析了J. Dixon(1970)的经典算法。他们发现其稳定性和复杂性都严重依赖于直径d=直径(G,S) (S是产生G的集合)。他们提出了使用Erdos-Renyi生成器和修改Dixon平均方法的最坏情况加速。在渐近复杂度方面的总体效果是保证(n log mod G mod)/sup O(1)/运行时间
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信