Ocean Current Segmentation at Different Depths and Correlation with Temperature in a MPAS-Ocean Simulation

Petra Gospodnetić, D. Banesh, P. Wolfram, M. Petersen, H. Hagen, J. Ahrens, M. Rauhut
{"title":"Ocean Current Segmentation at Different Depths and Correlation with Temperature in a MPAS-Ocean Simulation","authors":"Petra Gospodnetić, D. Banesh, P. Wolfram, M. Petersen, H. Hagen, J. Ahrens, M. Rauhut","doi":"10.1109/SciVis.2018.8823794","DOIUrl":null,"url":null,"abstract":"When analyzing and interpreting results of an ocean simulation, the prevalent method in oceanography is to visualize the complete dataset. However, this can lead to data being missed or misinterpreted due to the distraction caused by the extraneous data of the simulation. Furthermore, when the data stretches over many layers in depth or over numerous time-steps, the ability to track attributes such as ocean currents becomes difficult due to the complexity of the data. We propose an image processing approach to simulation preprocessing for visualization purposes, which offers automation of ocean current tracking within a simulation and ocean current segmentation from the rest of the simulation data. Using the proposed approach, it is possible to automatically identify the most scientifically-relevant streams, extract them from the rest of the simulation and correlate their behavior with other simulation parameters.","PeriodicalId":306021,"journal":{"name":"2018 IEEE Scientific Visualization Conference (SciVis)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Scientific Visualization Conference (SciVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SciVis.2018.8823794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

When analyzing and interpreting results of an ocean simulation, the prevalent method in oceanography is to visualize the complete dataset. However, this can lead to data being missed or misinterpreted due to the distraction caused by the extraneous data of the simulation. Furthermore, when the data stretches over many layers in depth or over numerous time-steps, the ability to track attributes such as ocean currents becomes difficult due to the complexity of the data. We propose an image processing approach to simulation preprocessing for visualization purposes, which offers automation of ocean current tracking within a simulation and ocean current segmentation from the rest of the simulation data. Using the proposed approach, it is possible to automatically identify the most scientifically-relevant streams, extract them from the rest of the simulation and correlate their behavior with other simulation parameters.
mpas海洋模拟中不同深度的海流分割及其与温度的相关性
在分析和解释海洋模拟结果时,海洋学中流行的方法是将完整的数据集可视化。然而,由于模拟的无关数据引起的干扰,这可能导致数据被遗漏或误解。此外,当数据延伸到多个深度层或多个时间步长时,由于数据的复杂性,跟踪诸如洋流等属性的能力变得困难。我们提出了一种用于仿真预处理的图像处理方法,以实现可视化目的,该方法提供了仿真中洋流跟踪的自动化以及从其余仿真数据中进行洋流分割的自动化。使用提出的方法,可以自动识别最科学相关的流,从其余的模拟中提取它们,并将它们的行为与其他模拟参数关联起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信