Infrared Ship Target Image Smoothing Based on Adaptive Mean Shift

Zhaoying Liu, Changming Sun, X. Bai, F. Zhou
{"title":"Infrared Ship Target Image Smoothing Based on Adaptive Mean Shift","authors":"Zhaoying Liu, Changming Sun, X. Bai, F. Zhou","doi":"10.1109/DICTA.2014.7008113","DOIUrl":null,"url":null,"abstract":"Infrared (IR) image denoising is important for IR image analysis. In this paper, we propose a method based on adaptive range bandwidth mean shift for IR ship target image smoothing, aiming to effectively suppress noise as well as preserve important target structures. First, local image properties, including the mean value and standard deviation, are combined to build a salient region map, and a thresholding method is applied to obtain a binary mask on the target region. Then, we develop an adaptive range bandwidth mean shift method for image denoising. By associating the range bandwidth of the mean shift with local region saliency, we can adjust the bandwidth adaptively, thus to smooth the background region while preserving important target structures. Experimental results show that this method works well for IR ship target images with different backgrounds. It demonstrates superior performance for image denoising and target preserving, compared with some existing image denoising methods.","PeriodicalId":146695,"journal":{"name":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2014.7008113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Infrared (IR) image denoising is important for IR image analysis. In this paper, we propose a method based on adaptive range bandwidth mean shift for IR ship target image smoothing, aiming to effectively suppress noise as well as preserve important target structures. First, local image properties, including the mean value and standard deviation, are combined to build a salient region map, and a thresholding method is applied to obtain a binary mask on the target region. Then, we develop an adaptive range bandwidth mean shift method for image denoising. By associating the range bandwidth of the mean shift with local region saliency, we can adjust the bandwidth adaptively, thus to smooth the background region while preserving important target structures. Experimental results show that this method works well for IR ship target images with different backgrounds. It demonstrates superior performance for image denoising and target preserving, compared with some existing image denoising methods.
基于自适应均值位移的红外舰船目标图像平滑
红外图像去噪是红外图像分析的重要内容。本文提出了一种基于自适应距离带宽平均偏移的红外舰船目标图像平滑方法,旨在有效地抑制噪声并保留重要的目标结构。首先,结合图像的局部属性,包括均值和标准差,构建显著区域图,并应用阈值法在目标区域上获得二值掩码;在此基础上,提出了一种自适应范围带宽均值移图像去噪方法。通过将均值漂移的范围带宽与局部区域显著性相关联,可以自适应地调整带宽,从而在保持重要目标结构的同时平滑背景区域。实验结果表明,该方法对不同背景的红外舰船目标图像具有较好的效果。与现有的一些图像去噪方法相比,该方法在图像去噪和目标保持方面表现出优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信