{"title":"Enhancing cross-language information retrieval by an automatic acquisition of bilingual terminology from comparable corpora","authors":"F. Sadat, Masatoshi Yoshikawa, Shunsuke Uemura","doi":"10.1145/860435.860519","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to bilingual lexicon extraction from comparable corpora and evaluations on Cross-Language Information Retrieval. We explore a bi-directional extraction of bilingual terminology primarily from comparable corpora. A combined statistics-based and linguistics-based model to select best translation candidates to phrasal translation is proposed. Evaluations using a large test collection for Japanese-English revealed the proposed combination of bi-directional comparable corpora, bilingual dictionaries and transliteration, augmented with linguistics-based pruning to be highly effective in Cross-Language Information Retrieval.","PeriodicalId":209809,"journal":{"name":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/860435.860519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
This paper presents an approach to bilingual lexicon extraction from comparable corpora and evaluations on Cross-Language Information Retrieval. We explore a bi-directional extraction of bilingual terminology primarily from comparable corpora. A combined statistics-based and linguistics-based model to select best translation candidates to phrasal translation is proposed. Evaluations using a large test collection for Japanese-English revealed the proposed combination of bi-directional comparable corpora, bilingual dictionaries and transliteration, augmented with linguistics-based pruning to be highly effective in Cross-Language Information Retrieval.