Statistical Classification of Spatial Relationships among Mathematical Symbols

Walaa Aly, S. Uchida, Akio Fujiyoshi, Masakazu Suzuki
{"title":"Statistical Classification of Spatial Relationships among Mathematical Symbols","authors":"Walaa Aly, S. Uchida, Akio Fujiyoshi, Masakazu Suzuki","doi":"10.1109/ICDAR.2009.90","DOIUrl":null,"url":null,"abstract":"In this paper, a statistical decision method for automatic classification of spatial relationships between each adjacent pair is proposed. Each pair is composed of mathematical symbols and/or alphabetical characters. Special treatment of mathematical symbols with variable size is important.This classification is important to recognize an accurate structure analysis module of math OCR. Experimental results on a very large database showed that the proposed method worked well with an accuracy of 99.57% by two important geometric feature relative size and relative position.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper, a statistical decision method for automatic classification of spatial relationships between each adjacent pair is proposed. Each pair is composed of mathematical symbols and/or alphabetical characters. Special treatment of mathematical symbols with variable size is important.This classification is important to recognize an accurate structure analysis module of math OCR. Experimental results on a very large database showed that the proposed method worked well with an accuracy of 99.57% by two important geometric feature relative size and relative position.
数学符号间空间关系的统计分类
本文提出了一种用于相邻对空间关系自动分类的统计决策方法。每一对都由数学符号和/或字母字符组成。对可变大小的数学符号进行特殊处理是很重要的。这种分类对于识别准确的数学OCR结构分析模块具有重要意义。在一个非常大的数据库上的实验结果表明,该方法在两个重要的几何特征相对尺寸和相对位置上取得了良好的效果,准确率达到99.57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信