Image Recall on Image-Text Intertwined Lifelogs

Tzu-Hsuan Chu, Hen-Hsen Huang, Hsin-Hsi Chen
{"title":"Image Recall on Image-Text Intertwined Lifelogs","authors":"Tzu-Hsuan Chu, Hen-Hsen Huang, Hsin-Hsi Chen","doi":"10.1145/3350546.3352555","DOIUrl":null,"url":null,"abstract":"People engage in lifelogging by taking photos with cameras and cellphones anytime anywhere and share the photos, intertwined with captions or descriptions, on social media platforms. The imagetext intertwined data provides richer information for image recall. When images cannot keep the complete information, the textual information is a complement to describe the life experiences under the photos. This work proposes a multimodal retrieval model for image recall in image-text intertwined lifelogs. Our Attentive Image-Story model combines an Image model, which transfers visual information and textual information to a single representation space, and a Story model, which captures text-based contextual information, with an attention mechanism to reduce the semantic gap between visual and textual information. Experimental results show our model outperforms a state-of-the-art image-based retrieval model and the image/text hybrid system.CCS CONCEPTS• Information systems → Multimedia and multimodal retrieval; • Computing methodologies → Natural language processing; Image representations.","PeriodicalId":171168,"journal":{"name":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3350546.3352555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

People engage in lifelogging by taking photos with cameras and cellphones anytime anywhere and share the photos, intertwined with captions or descriptions, on social media platforms. The imagetext intertwined data provides richer information for image recall. When images cannot keep the complete information, the textual information is a complement to describe the life experiences under the photos. This work proposes a multimodal retrieval model for image recall in image-text intertwined lifelogs. Our Attentive Image-Story model combines an Image model, which transfers visual information and textual information to a single representation space, and a Story model, which captures text-based contextual information, with an attention mechanism to reduce the semantic gap between visual and textual information. Experimental results show our model outperforms a state-of-the-art image-based retrieval model and the image/text hybrid system.CCS CONCEPTS• Information systems → Multimedia and multimodal retrieval; • Computing methodologies → Natural language processing; Image representations.
图像-文本交织生活日志的图像回忆
人们随时随地用相机和手机拍照,并在社交媒体平台上分享照片,配上文字或描述,从事生活记录。图像文本交织数据为图像检索提供了更丰富的信息。当图像不能保留完整的信息时,文字信息是描述照片下生活经历的补充。本文提出了一种多模态检索模型,用于图像-文本交织生活日志中的图像回忆。我们的细心图像-故事模型结合了图像模型和故事模型,图像模型将视觉信息和文本信息转移到一个单一的表示空间,故事模型捕获基于文本的上下文信息,并采用注意机制来减少视觉和文本信息之间的语义差距。实验结果表明,我们的模型优于目前最先进的基于图像的检索模型和图像/文本混合系统。•信息系统→多媒体和多模式检索;•计算方法→自然语言处理;图像的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信