Comparison of the automatic speaker recognition performance over standard features

Milan M. Dobrovic, V. Delić, N. Jakovljević, I. Jokic
{"title":"Comparison of the automatic speaker recognition performance over standard features","authors":"Milan M. Dobrovic, V. Delić, N. Jakovljević, I. Jokic","doi":"10.1109/SISY.2012.6339541","DOIUrl":null,"url":null,"abstract":"This paper presents a study of speaker recognition accuracy depending on the choice of features, window width and model complexity. The standard features were considered, such as linear and perceptual prediction coefficients (LPC and PLP) and mel-frequency cepstral coefficients (MFCC). Gaussian mixture model (GMM), with the use of HTK tools, was chosen for speaker modelling. Speech database S70W100s120, recorded at the Electrical Engineering Department of Belgrade University, was used for purposes of system training and testing. Ten speaker models and the universal background model (UBM) were trained.","PeriodicalId":207630,"journal":{"name":"2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2012.6339541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a study of speaker recognition accuracy depending on the choice of features, window width and model complexity. The standard features were considered, such as linear and perceptual prediction coefficients (LPC and PLP) and mel-frequency cepstral coefficients (MFCC). Gaussian mixture model (GMM), with the use of HTK tools, was chosen for speaker modelling. Speech database S70W100s120, recorded at the Electrical Engineering Department of Belgrade University, was used for purposes of system training and testing. Ten speaker models and the universal background model (UBM) were trained.
自动说话人识别性能与标准功能的比较
本文研究了基于特征选择、窗宽和模型复杂度的说话人识别精度。考虑了线性和感知预测系数(LPC和PLP)以及mel-frequency倒谱系数(MFCC)等标准特征。使用HTK工具,选择高斯混合模型(GMM)对说话人进行建模。语音数据库S70W100s120记录于贝尔格莱德大学电气工程系,用于系统培训和测试。训练10个说话人模型和通用背景模型(UBM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信