Semantic Information Extraction for Improved Word Embeddings

VS@HLT-NAACL Pub Date : 2015-06-01 DOI:10.3115/v1/W15-1523
Jiaqiang Chen, Gerard de Melo
{"title":"Semantic Information Extraction for Improved Word Embeddings","authors":"Jiaqiang Chen, Gerard de Melo","doi":"10.3115/v1/W15-1523","DOIUrl":null,"url":null,"abstract":"Word embeddings have recently proven useful in a number of different applications that deal with natural language. Such embeddings succinctly reflect semantic similarities between words based on their sentence-internal contexts in large corpora. In this paper, we show that information extraction techniques provide valuable additional evidence of semantic relationships that can be exploited when producing word embeddings. We propose a joint model to train word embeddings both on regular context information and on more explicit semantic extractions. The word vectors obtained from such an augmented joint training show improved results on word similarity tasks, suggesting that they can be useful in applications that involve word meanings.","PeriodicalId":299646,"journal":{"name":"VS@HLT-NAACL","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VS@HLT-NAACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W15-1523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Word embeddings have recently proven useful in a number of different applications that deal with natural language. Such embeddings succinctly reflect semantic similarities between words based on their sentence-internal contexts in large corpora. In this paper, we show that information extraction techniques provide valuable additional evidence of semantic relationships that can be exploited when producing word embeddings. We propose a joint model to train word embeddings both on regular context information and on more explicit semantic extractions. The word vectors obtained from such an augmented joint training show improved results on word similarity tasks, suggesting that they can be useful in applications that involve word meanings.
改进词嵌入的语义信息提取
词嵌入最近在处理自然语言的许多不同应用程序中被证明是有用的。在大型语料库中,这种嵌入可以简洁地反映出基于句子内部上下文的词之间的语义相似性。在本文中,我们展示了信息提取技术提供了有价值的语义关系的额外证据,这些证据可以在产生词嵌入时被利用。我们提出了一个联合模型,在常规上下文信息和更明确的语义提取上训练词嵌入。从这种增强联合训练中获得的词向量在词相似度任务上显示出改进的结果,这表明它们在涉及词义的应用中是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信