{"title":"Regression Nearest Neighbor in Face Recognition","authors":"Shu Yang, Chao Zhang","doi":"10.1109/ICPR.2006.989","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a regression nearest neighbor framework for general classification tasks. To alleviate potential problems caused by nonlinearity, we propose a kernel regression nearest neighbor (KRNN) algorithm and its convex counterpart (CKRNN) as two specific extensions of nearest neighbor algorithm and present a fast and useful kernel selection method correspondingly. Comprehensive analysis and extensive experiments are used to demonstrate the effectiveness of our methods in real face datasets","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, we introduce a regression nearest neighbor framework for general classification tasks. To alleviate potential problems caused by nonlinearity, we propose a kernel regression nearest neighbor (KRNN) algorithm and its convex counterpart (CKRNN) as two specific extensions of nearest neighbor algorithm and present a fast and useful kernel selection method correspondingly. Comprehensive analysis and extensive experiments are used to demonstrate the effectiveness of our methods in real face datasets