Spin Dynamics in the Ferromagnetic Resonance

H. Wen, J. Xia
{"title":"Spin Dynamics in the Ferromagnetic Resonance","authors":"H. Wen, J. Xia","doi":"10.11648/J.AJPA.20190701.12","DOIUrl":null,"url":null,"abstract":"The LLG equation including the spin-transfer torque term, and the frequency spectrum analysis method are used to study the dynamic process of ferromagnetic resonance. The effects of damping factor α, internal anisotropic field, magnetic field inclination, and spin-transfer torque caused by the spin current are studied. The following results are found as follows. The ferromagnetic resonance spectra as functions of the frequency ω for fixed magnetic field, and functions of magnetic field for fixed frequency are obtained, and it is found that the internal magnetic field also has contribution to the resonance field or frequency, and we know that the resonant frequency ω0≈he + h1 (in unit of γH0). In addition, when the damping factor increases from 0.01 to 0.03, the resonance frequencies increases slightly, and the resonance strength decreases. And the oscillatory waves of mx and my reach their stable values more quickly. Furthermore, the internal field perpendicular to the external field h0 as well as it parallel to h0 also has the effect to the resonant frequency. The positive and negative internal field will have reversed effects to the resonance field or frequency. And in the end when the spin current becomes larger the STT effect becomes stronger, even exceeds the ferromagnetic resonance effect, makes mz reversed, and mx and my decreased.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJPA.20190701.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The LLG equation including the spin-transfer torque term, and the frequency spectrum analysis method are used to study the dynamic process of ferromagnetic resonance. The effects of damping factor α, internal anisotropic field, magnetic field inclination, and spin-transfer torque caused by the spin current are studied. The following results are found as follows. The ferromagnetic resonance spectra as functions of the frequency ω for fixed magnetic field, and functions of magnetic field for fixed frequency are obtained, and it is found that the internal magnetic field also has contribution to the resonance field or frequency, and we know that the resonant frequency ω0≈he + h1 (in unit of γH0). In addition, when the damping factor increases from 0.01 to 0.03, the resonance frequencies increases slightly, and the resonance strength decreases. And the oscillatory waves of mx and my reach their stable values more quickly. Furthermore, the internal field perpendicular to the external field h0 as well as it parallel to h0 also has the effect to the resonant frequency. The positive and negative internal field will have reversed effects to the resonance field or frequency. And in the end when the spin current becomes larger the STT effect becomes stronger, even exceeds the ferromagnetic resonance effect, makes mz reversed, and mx and my decreased.
铁磁共振中的自旋动力学
采用包含自旋传递转矩项的LLG方程和频谱分析方法研究了铁磁共振的动态过程。研究了自旋电流对阻尼因子α、内部各向异性场、磁场倾角和自旋传递转矩的影响。结果如下所示。得到了固定磁场下铁磁谐振谱作为频率ω的函数,以及固定频率下磁场的函数,发现内部磁场对谐振场或频率也有贡献,我们知道谐振频率ω0≈he + h1(以γH0为单位)。当阻尼系数从0.01增加到0.03时,共振频率略有增加,共振强度减小。mx和my的振荡波更快地达到它们的稳定值。此外,垂直于外场h0和平行于外场h0的内场对谐振频率也有影响。正负内场对共振场或频率有相反的影响。最后,当自旋电流变大时,STT效应变得更强,甚至超过了铁磁共振效应,使mz反转,mx和my减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信