Memory management schemes for radiosity computation in complex environments

Daniel Méneveaux, K. Bouatouch, E. Maisel
{"title":"Memory management schemes for radiosity computation in complex environments","authors":"Daniel Méneveaux, K. Bouatouch, E. Maisel","doi":"10.1109/CGI.1998.694329","DOIUrl":null,"url":null,"abstract":"Hierarchical radiosity is a very demanding process in terms of computation time and memory resources even for scenes of moderate complexity. To handle complex environments which don't fit in the memory, new solutions have to be devised. One solution is to partition the scene into subsets of polygons (3D cells or clusters) and to maintain in memory only some of them. The radiosity computation is performed only for this resident subset which changes during the resolution process. This change entails many read and write operations from or onto the disk. These disk transfers must be ordered to make the radiosity algorithms tractable. The authors propose different ordering strategies which can be seen as complementary to those devised by Teller (1994).","PeriodicalId":434370,"journal":{"name":"Proceedings. Computer Graphics International (Cat. No.98EX149)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Computer Graphics International (Cat. No.98EX149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGI.1998.694329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Hierarchical radiosity is a very demanding process in terms of computation time and memory resources even for scenes of moderate complexity. To handle complex environments which don't fit in the memory, new solutions have to be devised. One solution is to partition the scene into subsets of polygons (3D cells or clusters) and to maintain in memory only some of them. The radiosity computation is performed only for this resident subset which changes during the resolution process. This change entails many read and write operations from or onto the disk. These disk transfers must be ordered to make the radiosity algorithms tractable. The authors propose different ordering strategies which can be seen as complementary to those devised by Teller (1994).
复杂环境下辐射计算的内存管理方案
即使对于中等复杂度的场景,分层辐射在计算时间和内存资源方面也是一个非常苛刻的过程。为了处理内存无法容纳的复杂环境,必须设计新的解决方案。一种解决方案是将场景划分为多边形子集(3D单元或集群),并仅在内存中保留其中的一些。仅对在分辨率过程中发生变化的常驻子集进行辐射计算。这种更改需要对磁盘进行许多读写操作。这些磁盘传输必须是有序的,以使辐射算法易于处理。作者提出了不同的排序策略,可以看作是对Teller(1994)设计的那些策略的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信