{"title":"Abordagem analítica para predição e prevenção do Churn","authors":"G. Alves, L. Lima, Lucas da Silva Oliveira","doi":"10.25286/repa.v7i3.2461","DOIUrl":null,"url":null,"abstract":"O Churn, é um termo que se refere a clientes que abandonam uma empresa, este problema é constante no mundo empresarial. Dessa forma se torna necessário o uso de técnicas de análise e tratamento dos dados, para entender e solucionar o processo de Churn numa empresa. A empresa analisada nesta pesquisa foi a Justa, que é uma Fintech brasileira, que proporcionou a base de dados para avaliação e implementação deste estudo. A base disponibilizada contém duas partes: As informações dos clientes em si e as transações deles, nestas foram realizadas etapas de pré-processamento para melhor análise dos dados. Após as etapas de pré-processamento são aplicados técnicas e algoritmos de Machine Learning como: K-means, KNN e Logistic Regression a fim de buscar solucionar o problema de Churn na empresa. Os resultados aqui obtidos mostram que, para o escopo estimado, o projeto consegue dizer se um cliente é churn, com base nas suas transações, mas devido a grande rotatividade de clientes os grupos de clientes analisados não são acentuados e possuem poucos padrões comportamentais. Para uma análise mais elaborada dos perfis de cliente, é necessário obter informações mais detalhadas do cliente, como renda mensal, ocupação, entre outros.","PeriodicalId":331078,"journal":{"name":"Revista de Engenharia e Pesquisa Aplicada","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Engenharia e Pesquisa Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25286/repa.v7i3.2461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
O Churn, é um termo que se refere a clientes que abandonam uma empresa, este problema é constante no mundo empresarial. Dessa forma se torna necessário o uso de técnicas de análise e tratamento dos dados, para entender e solucionar o processo de Churn numa empresa. A empresa analisada nesta pesquisa foi a Justa, que é uma Fintech brasileira, que proporcionou a base de dados para avaliação e implementação deste estudo. A base disponibilizada contém duas partes: As informações dos clientes em si e as transações deles, nestas foram realizadas etapas de pré-processamento para melhor análise dos dados. Após as etapas de pré-processamento são aplicados técnicas e algoritmos de Machine Learning como: K-means, KNN e Logistic Regression a fim de buscar solucionar o problema de Churn na empresa. Os resultados aqui obtidos mostram que, para o escopo estimado, o projeto consegue dizer se um cliente é churn, com base nas suas transações, mas devido a grande rotatividade de clientes os grupos de clientes analisados não são acentuados e possuem poucos padrões comportamentais. Para uma análise mais elaborada dos perfis de cliente, é necessário obter informações mais detalhadas do cliente, como renda mensal, ocupação, entre outros.