Parameter reduction of MISO Wiener-Schetzen models using the best linear approximation

K. Tiels, P. Heuberger, J. Schoukens
{"title":"Parameter reduction of MISO Wiener-Schetzen models using the best linear approximation","authors":"K. Tiels, P. Heuberger, J. Schoukens","doi":"10.1109/I2MTC.2012.6229321","DOIUrl":null,"url":null,"abstract":"This paper concerns the identification of MISO (multiple inputs single output) Wiener systems. For each input-output path, the linear dynamics are modeled by a set of orthonormal basis functions (OBFs). The static nonlinearity is modeled through a multivariate polynomial. The parameters of the model are the coefficients of this polynomial. In this paper, an identification procedure for SISO (single input single output) Wiener systems is extended towards MISO Wiener systems. The poles of the OBFs are estimated using an extension of the best linear approximation (BLA) towards MIMO (multiple input multiple output) systems. As the number of parameters can increase significantly compared to the SISO case, a parameter reduction step, first developed for the SISO case, is extended in this paper to the MISO case. In each set of OBFs, one OBF is replaced by the BLA of the input-output path corresponding to that set. It is shown that in this way the number of relevantly contributing terms in the multivariate polynomial is significantly reduced. Simulation results show a major reduction of the number of parameters, with only a minor increase in the rms error on the simulated output.","PeriodicalId":387839,"journal":{"name":"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2012.6229321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper concerns the identification of MISO (multiple inputs single output) Wiener systems. For each input-output path, the linear dynamics are modeled by a set of orthonormal basis functions (OBFs). The static nonlinearity is modeled through a multivariate polynomial. The parameters of the model are the coefficients of this polynomial. In this paper, an identification procedure for SISO (single input single output) Wiener systems is extended towards MISO Wiener systems. The poles of the OBFs are estimated using an extension of the best linear approximation (BLA) towards MIMO (multiple input multiple output) systems. As the number of parameters can increase significantly compared to the SISO case, a parameter reduction step, first developed for the SISO case, is extended in this paper to the MISO case. In each set of OBFs, one OBF is replaced by the BLA of the input-output path corresponding to that set. It is shown that in this way the number of relevantly contributing terms in the multivariate polynomial is significantly reduced. Simulation results show a major reduction of the number of parameters, with only a minor increase in the rms error on the simulated output.
使用最佳线性逼近的MISO Wiener-Schetzen模型的参数缩减
本文研究了多输入单输出维纳系统的辨识问题。对于每个输入-输出路径,线性动力学由一组正交基函数(obf)建模。静态非线性通过多元多项式建模。模型的参数就是这个多项式的系数。本文将单输入单输出维纳系统的辨识方法推广到MISO维纳系统。obf的极点是使用对MIMO(多输入多输出)系统的最佳线性近似(BLA)的扩展来估计的。由于与SISO情况相比,参数数量可以显著增加,因此本文将最初为SISO情况开发的参数缩减步骤扩展到MISO情况。在每个OBF集合中,一个OBF被对应于该集合的输入输出路径的BLA所替换。结果表明,这种方法显著减少了多元多项式中相关贡献项的数目。仿真结果表明,参数数量大大减少,而模拟输出的均方根误差仅略有增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信