{"title":"Dynamic bootstrap voltage technique for high efficiency buck converter in universal serial bus power device supplying system","authors":"Wei-Chung Chen, Ke-Horng Chen, Chinder Wey, Ying-Hsi Lin, Tsung-Yen Tsai, Chen-Chih Huang, Chao-Cheng Lee","doi":"10.1109/ASSCC.2013.6691008","DOIUrl":null,"url":null,"abstract":"For high power universal serial bus (USB) devices, the dynamic bootstrap voltage (DBV) technique is proposed to keep high efficiency over a wide load range, including light and heavy loads. Besides, the silicon area of power management of the system-on-a-chip (Soc) can be effectively reduced to 50% of conventional design with P-type high-side power MOSFET. The test chip fabricated in 0.25μm CMOS process shows 92% peak efficiency from 1mA to 1A. The maximum driving current is higher than 3A with 88 % efficiency. Compared to that without the DBV technique, the efficiency is improved about 28%.","PeriodicalId":296544,"journal":{"name":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2013.6691008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
For high power universal serial bus (USB) devices, the dynamic bootstrap voltage (DBV) technique is proposed to keep high efficiency over a wide load range, including light and heavy loads. Besides, the silicon area of power management of the system-on-a-chip (Soc) can be effectively reduced to 50% of conventional design with P-type high-side power MOSFET. The test chip fabricated in 0.25μm CMOS process shows 92% peak efficiency from 1mA to 1A. The maximum driving current is higher than 3A with 88 % efficiency. Compared to that without the DBV technique, the efficiency is improved about 28%.