{"title":"Hardware accelerated ambient occlusion techniques on GPUs","authors":"Perumaal Shanmugam, Okan Arikan","doi":"10.1145/1230100.1230113","DOIUrl":null,"url":null,"abstract":"We introduce a visually pleasant ambient occlusion approximation running on real-time graphics hardware. Our method is a multi-pass algorithm that separates the ambient occlusion problem into high-frequency, detailed ambient occlusion and low-frequency, distant ambient occlusion domains, both capable of running independently and in parallel. The high-frequency detailed approach uses an image-space method to approximate the ambient occlusion due to nearby occluders caused by high surface detail. The low-frequency approach uses the intrinsic properties of a modern GPU to greatly reduce the search area for large and distant occluders with the help of a low-detail approximated version of the occluder geometry. Our method utilizes the highly parallel, stream processors (GPUs) to perform real-time visually pleasant ambient occlusion. We show that our ambient occlusion approximation works on a wide variety of applications such as molecular data visualization, dynamic deformable animated models, highly detailed geometry. Our algorithm demonstrates scalability and is well-suited for the current and upcoming graphics hardware.","PeriodicalId":140639,"journal":{"name":"Proceedings of the 2007 symposium on Interactive 3D graphics and games","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"202","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 symposium on Interactive 3D graphics and games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1230100.1230113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 202
Abstract
We introduce a visually pleasant ambient occlusion approximation running on real-time graphics hardware. Our method is a multi-pass algorithm that separates the ambient occlusion problem into high-frequency, detailed ambient occlusion and low-frequency, distant ambient occlusion domains, both capable of running independently and in parallel. The high-frequency detailed approach uses an image-space method to approximate the ambient occlusion due to nearby occluders caused by high surface detail. The low-frequency approach uses the intrinsic properties of a modern GPU to greatly reduce the search area for large and distant occluders with the help of a low-detail approximated version of the occluder geometry. Our method utilizes the highly parallel, stream processors (GPUs) to perform real-time visually pleasant ambient occlusion. We show that our ambient occlusion approximation works on a wide variety of applications such as molecular data visualization, dynamic deformable animated models, highly detailed geometry. Our algorithm demonstrates scalability and is well-suited for the current and upcoming graphics hardware.