NAFBET: Bokeh Effect Transformation with Parameter Analysis Block based on NAFNet

Xiangyu Kong, Fan Wang, Dafeng Zhang, Jinlong Wu, Zi-jie Liu
{"title":"NAFBET: Bokeh Effect Transformation with Parameter Analysis Block based on NAFNet","authors":"Xiangyu Kong, Fan Wang, Dafeng Zhang, Jinlong Wu, Zi-jie Liu","doi":"10.1109/CVPRW59228.2023.00162","DOIUrl":null,"url":null,"abstract":"Bokeh effect transformation(BET) aims to transform the bokeh effect of one lens to another lens without harming the sharp foreground regions in the image. Recent studies have shown remarkable success in bokeh effect rendering. However, unlike the traditional bokeh effect rendering task, the BET task needs to transform the image into the bokeh effect of the specified lens. The existing bokeh rendering method is invalid or inefficient for BET, because each pair of lens needs to independently build different model. To address this limitation, we propose NAFBET, a scalable approach than can perform bokeh rendering for multiple lens using only a single model. NAFBET is based on the structure of the image restoration model NAFNet and expands it by adding the source and target parameter analysis block(PAB) to adapt to the BET task. This block can be very convenient to apply in UNet-based model, which can greatly improve BET performance. We did a lot of experiments to prove the effectiveness of our method. In particular, NAFBET won the 1st place in the NTIRE 2023 Bokeh effect transformation Challenge.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Bokeh effect transformation(BET) aims to transform the bokeh effect of one lens to another lens without harming the sharp foreground regions in the image. Recent studies have shown remarkable success in bokeh effect rendering. However, unlike the traditional bokeh effect rendering task, the BET task needs to transform the image into the bokeh effect of the specified lens. The existing bokeh rendering method is invalid or inefficient for BET, because each pair of lens needs to independently build different model. To address this limitation, we propose NAFBET, a scalable approach than can perform bokeh rendering for multiple lens using only a single model. NAFBET is based on the structure of the image restoration model NAFNet and expands it by adding the source and target parameter analysis block(PAB) to adapt to the BET task. This block can be very convenient to apply in UNet-based model, which can greatly improve BET performance. We did a lot of experiments to prove the effectiveness of our method. In particular, NAFBET won the 1st place in the NTIRE 2023 Bokeh effect transformation Challenge.
基于NAFNet参数分析块的散景效果变换
散景效果变换(BET)旨在将一个镜头的散景效果变换到另一个镜头,而不损害图像中清晰的前景区域。最近的研究显示散景效果渲染取得了显著的成功。但是,与传统的散景效果渲染任务不同,BET任务需要将图像转换为指定镜头的散景效果。现有的散景渲染方法对于BET来说是无效或低效的,因为每对镜头需要独立构建不同的模型。为了解决这一限制,我们提出了NAFBET,这是一种可扩展的方法,可以仅使用单个模型对多个镜头进行散景渲染。NAFBET以图像恢复模型NAFNet的结构为基础,通过增加源和目标参数分析块(PAB)对其进行扩展,以适应BET任务。该块可以非常方便地应用于基于unet的模型中,从而大大提高了BET的性能。我们做了大量的实验来证明我们方法的有效性。特别是,NAFBET在NTIRE 2023散景效果转化挑战赛中获得第一名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信