An Evolutionary Clustering Algorithm Based on Adaptive Fuzzy Weighted Sum Validity Function

Hongbin Dong, Wei-gen Hou, Guisheng Yin
{"title":"An Evolutionary Clustering Algorithm Based on Adaptive Fuzzy Weighted Sum Validity Function","authors":"Hongbin Dong, Wei-gen Hou, Guisheng Yin","doi":"10.1109/CSO.2010.204","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel objective function called the adaptive Fuzzy Weighted Sum Validity Function(FWSVF), which is a merged weight of the several fuzzy cluster validity functions, including XB, PE, PC and PBMF. The improved validity function is more efficient than others. Furthermore, we present a Mixed Strategy Evolutionary Clustering Algorithm based adaptive validity function(AMSECA), which is merged from Evolutionary Algorithm along with Mixed Strategy and Fuzzy C-means Algorithm. Moreover, in the experiments, we show the effectiveness of AMSECA, AMSECA could find the proper number of clusters automatically as well as appropriate partitions of the data set and avoid local optima.","PeriodicalId":427481,"journal":{"name":"2010 Third International Joint Conference on Computational Science and Optimization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Joint Conference on Computational Science and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2010.204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we propose a novel objective function called the adaptive Fuzzy Weighted Sum Validity Function(FWSVF), which is a merged weight of the several fuzzy cluster validity functions, including XB, PE, PC and PBMF. The improved validity function is more efficient than others. Furthermore, we present a Mixed Strategy Evolutionary Clustering Algorithm based adaptive validity function(AMSECA), which is merged from Evolutionary Algorithm along with Mixed Strategy and Fuzzy C-means Algorithm. Moreover, in the experiments, we show the effectiveness of AMSECA, AMSECA could find the proper number of clusters automatically as well as appropriate partitions of the data set and avoid local optima.
基于自适应模糊加权和有效性函数的进化聚类算法
本文提出了一种新的目标函数,称为自适应模糊加权和有效性函数(FWSVF),它是几个模糊聚类有效性函数XB, PE, PC和PBMF的合并权值。改进后的有效性函数比其他函数效率更高。在此基础上,提出了一种基于自适应有效性函数的混合策略进化聚类算法(AMSECA),该算法将进化算法与混合策略和模糊c均值算法相融合。此外,在实验中,我们证明了AMSECA的有效性,AMSECA可以自动找到适当数量的聚类,并对数据集进行适当的分区,避免局部最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信