Nosayba El-Sayed, Anurag Mukkara, Po-An Tsai, H. Kasture, Xiaosong Ma, Daniel Sánchez
{"title":"KPart: A Hybrid Cache Partitioning-Sharing Technique for Commodity Multicores","authors":"Nosayba El-Sayed, Anurag Mukkara, Po-An Tsai, H. Kasture, Xiaosong Ma, Daniel Sánchez","doi":"10.1109/HPCA.2018.00019","DOIUrl":null,"url":null,"abstract":"Cache partitioning is now available in commercial hardware. In theory, software can leverage cache partitioning to use the last-level cache better and improve performance. In practice, however, current systems implement way-partitioning, which offers a limited number of partitions and often hurts performance. These limitations squander the performance potential of smart cache management. We present KPart, a hybrid cache partitioning-sharing technique that sidesteps the limitations of way-partitioning and unlocks significant performance on current systems. KPart first groups applications into clusters, then partitions the cache among these clusters. To build clusters, KPart relies on a novel technique to estimate the performance loss an application suffers when sharing a partition. KPart automatically chooses the number of clusters, balancing the isolation benefits of way-partitioning with its potential performance impact. KPart uses detailed profiling information to make these decisions. This information can be gathered either offline, or online at low overhead using a novel profiling mechanism. We evaluate KPart in a real system and in simulation. KPart improves throughput by 24% on average (up to 79%) on an Intel Broadwell-D system, whereas prior per-application partitioning policies improve throughput by just 1.7% on average and hurt 30% of workloads. Simulation results show that KPart achieves most of the performance of more advanced partitioning techniques that are not yet available in hardware.","PeriodicalId":154694,"journal":{"name":"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2018.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93
Abstract
Cache partitioning is now available in commercial hardware. In theory, software can leverage cache partitioning to use the last-level cache better and improve performance. In practice, however, current systems implement way-partitioning, which offers a limited number of partitions and often hurts performance. These limitations squander the performance potential of smart cache management. We present KPart, a hybrid cache partitioning-sharing technique that sidesteps the limitations of way-partitioning and unlocks significant performance on current systems. KPart first groups applications into clusters, then partitions the cache among these clusters. To build clusters, KPart relies on a novel technique to estimate the performance loss an application suffers when sharing a partition. KPart automatically chooses the number of clusters, balancing the isolation benefits of way-partitioning with its potential performance impact. KPart uses detailed profiling information to make these decisions. This information can be gathered either offline, or online at low overhead using a novel profiling mechanism. We evaluate KPart in a real system and in simulation. KPart improves throughput by 24% on average (up to 79%) on an Intel Broadwell-D system, whereas prior per-application partitioning policies improve throughput by just 1.7% on average and hurt 30% of workloads. Simulation results show that KPart achieves most of the performance of more advanced partitioning techniques that are not yet available in hardware.