KPart: A Hybrid Cache Partitioning-Sharing Technique for Commodity Multicores

Nosayba El-Sayed, Anurag Mukkara, Po-An Tsai, H. Kasture, Xiaosong Ma, Daniel Sánchez
{"title":"KPart: A Hybrid Cache Partitioning-Sharing Technique for Commodity Multicores","authors":"Nosayba El-Sayed, Anurag Mukkara, Po-An Tsai, H. Kasture, Xiaosong Ma, Daniel Sánchez","doi":"10.1109/HPCA.2018.00019","DOIUrl":null,"url":null,"abstract":"Cache partitioning is now available in commercial hardware. In theory, software can leverage cache partitioning to use the last-level cache better and improve performance. In practice, however, current systems implement way-partitioning, which offers a limited number of partitions and often hurts performance. These limitations squander the performance potential of smart cache management. We present KPart, a hybrid cache partitioning-sharing technique that sidesteps the limitations of way-partitioning and unlocks significant performance on current systems. KPart first groups applications into clusters, then partitions the cache among these clusters. To build clusters, KPart relies on a novel technique to estimate the performance loss an application suffers when sharing a partition. KPart automatically chooses the number of clusters, balancing the isolation benefits of way-partitioning with its potential performance impact. KPart uses detailed profiling information to make these decisions. This information can be gathered either offline, or online at low overhead using a novel profiling mechanism. We evaluate KPart in a real system and in simulation. KPart improves throughput by 24% on average (up to 79%) on an Intel Broadwell-D system, whereas prior per-application partitioning policies improve throughput by just 1.7% on average and hurt 30% of workloads. Simulation results show that KPart achieves most of the performance of more advanced partitioning techniques that are not yet available in hardware.","PeriodicalId":154694,"journal":{"name":"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2018.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

Abstract

Cache partitioning is now available in commercial hardware. In theory, software can leverage cache partitioning to use the last-level cache better and improve performance. In practice, however, current systems implement way-partitioning, which offers a limited number of partitions and often hurts performance. These limitations squander the performance potential of smart cache management. We present KPart, a hybrid cache partitioning-sharing technique that sidesteps the limitations of way-partitioning and unlocks significant performance on current systems. KPart first groups applications into clusters, then partitions the cache among these clusters. To build clusters, KPart relies on a novel technique to estimate the performance loss an application suffers when sharing a partition. KPart automatically chooses the number of clusters, balancing the isolation benefits of way-partitioning with its potential performance impact. KPart uses detailed profiling information to make these decisions. This information can be gathered either offline, or online at low overhead using a novel profiling mechanism. We evaluate KPart in a real system and in simulation. KPart improves throughput by 24% on average (up to 79%) on an Intel Broadwell-D system, whereas prior per-application partitioning policies improve throughput by just 1.7% on average and hurt 30% of workloads. Simulation results show that KPart achieves most of the performance of more advanced partitioning techniques that are not yet available in hardware.
面向商品多核的混合缓存分区共享技术
现在在商业硬件中可以使用缓存分区。理论上,软件可以利用缓存分区来更好地使用最后一级缓存并提高性能。然而,在实践中,当前的系统实现了方式分区,它提供了有限数量的分区,并且经常损害性能。这些限制浪费了智能缓存管理的性能潜力。我们提出了KPart,这是一种混合缓存分区共享技术,它避开了方式分区的限制,并在当前系统上解锁了显著的性能。KPart首先将应用程序分组到集群中,然后在这些集群之间对缓存进行分区。为了构建集群,KPart依赖于一种新技术来估计应用程序在共享分区时遭受的性能损失。KPart自动选择集群的数量,平衡方式分区的隔离优势及其潜在的性能影响。KPart使用详细的分析信息来做出这些决策。这些信息既可以离线收集,也可以使用一种新的分析机制以低开销在线收集。我们在实际系统和仿真中对KPart进行了评估。KPart在Intel Broadwell-D系统上平均提高了24%(最高79%)的吞吐量,而之前的每个应用程序分区策略平均只提高了1.7%的吞吐量,并损害了30%的工作负载。仿真结果表明,KPart实现了硬件中尚未实现的更高级的分区技术的大部分性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信