“Stronger than Hate”: On the Dissemination of Hate Speech during the 2020 Vienna Terrorist Attack

Michaela Lindenmayr, Ema Kusen, Mark Strembeck
{"title":"“Stronger than Hate”: On the Dissemination of Hate Speech during the 2020 Vienna Terrorist Attack","authors":"Michaela Lindenmayr, Ema Kusen, Mark Strembeck","doi":"10.1109/SNAMS53716.2021.9732081","DOIUrl":null,"url":null,"abstract":"In this paper, we present an analysis of 36,685 tweets related to the 2020 Vienna terror attack. We used a Convolutional Neural Network (CNN) approach to identify hateful and non-hateful tweets. Our findings indicate that users who post hateful content are predominantly anonymous. Moreover, we found that hateful messages can spread widely across the network and that hateful communication forms characteristic structural patterns.","PeriodicalId":387260,"journal":{"name":"2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNAMS53716.2021.9732081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present an analysis of 36,685 tweets related to the 2020 Vienna terror attack. We used a Convolutional Neural Network (CNN) approach to identify hateful and non-hateful tweets. Our findings indicate that users who post hateful content are predominantly anonymous. Moreover, we found that hateful messages can spread widely across the network and that hateful communication forms characteristic structural patterns.
“强于仇恨”:关于2020年维也纳恐怖袭击期间仇恨言论的传播
在本文中,我们对与2020年维也纳恐怖袭击有关的36685条推文进行了分析。我们使用卷积神经网络(CNN)方法来识别仇恨和非仇恨推文。我们的研究结果表明,发布仇恨内容的用户主要是匿名的。此外,我们发现仇恨信息可以在网络中广泛传播,并且仇恨传播形成了特有的结构模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信