Characteristics of Truss Core Created by Origami Forming Method

Ayami Abe, K. Terada, H. Yashiro, I. Hagiwara
{"title":"Characteristics of Truss Core Created by Origami Forming Method","authors":"Ayami Abe, K. Terada, H. Yashiro, I. Hagiwara","doi":"10.1115/detc2019-97740","DOIUrl":null,"url":null,"abstract":"\n The truss core surpasses the honeycomb core depending on the tasks. The height of core is limited by press forming and so on. Therefore, we developed a method by folding mountain / valley lines like origami. The origami forming method has the feature that it can be done from paper to metal by the same method. By examining three-point bending tests, drop tests, and analyzing them, we show that the structure that space-filled with cores obtained by the origami forming method called ATCP will be a box for both excellent cushioning material and transporting. Moreover, we also show that the core structure obtained by this has excellent sound insulation performance.","PeriodicalId":211780,"journal":{"name":"Volume 5B: 43rd Mechanisms and Robotics Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5B: 43rd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The truss core surpasses the honeycomb core depending on the tasks. The height of core is limited by press forming and so on. Therefore, we developed a method by folding mountain / valley lines like origami. The origami forming method has the feature that it can be done from paper to metal by the same method. By examining three-point bending tests, drop tests, and analyzing them, we show that the structure that space-filled with cores obtained by the origami forming method called ATCP will be a box for both excellent cushioning material and transporting. Moreover, we also show that the core structure obtained by this has excellent sound insulation performance.
折纸成形法制造桁架芯的特点
根据任务的不同,桁架核心优于蜂窝核心。芯的高度受挤压成形等因素的限制。因此,我们开发了一种像折纸一样折叠山/谷线的方法。折纸成形法的特点是可以用同样的方法从纸到金属。通过三点弯曲试验、跌落试验和分析,我们证明了用折纸成形法(ATCP)获得的芯填充空间的结构将是一个既具有优良缓冲材料又具有运输性能的盒子。此外,我们还表明,通过这种方法获得的核心结构具有优异的隔声性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信