Camilla Konermann, Frank Bunge, S. Driesche, M. Vellekoop
{"title":"μfluidic Sensor for Optical Monitoring of Bacteria Growth with Improved Limit of Detection","authors":"Camilla Konermann, Frank Bunge, S. Driesche, M. Vellekoop","doi":"10.1109/ICSENS.2018.8589598","DOIUrl":null,"url":null,"abstract":"We present an approach and device to monitor on-chip bacteria growth based on the absorption measurement with a low limit of detection. Because of the small height of microfluidic channels, a standard optical density method is not applicable. In our approach, the optical path is 20 times longer by performing an in-plane optical density measurement compared to an out-of-plane approach so that the sensitivity is improved. An LED (580 nm center wavelength) is used to propagate light through a sample in the measurement channel. The passing light intensity is measured at the outlet by a photodiode. The relation between the absorbed light and the bacteria concentration agrees well with the theory. A particular focus is laid on reproducible setup based on 3D-printed holders where external disturbances such as ambient light are minimized. In combination with the increased sensitivity, the limit of detection is only 1.5. 106bac/mL. By applying the method of this contribution, additional standard laboratory operations can be integrated into chips.","PeriodicalId":405874,"journal":{"name":"2018 IEEE SENSORS","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2018.8589598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present an approach and device to monitor on-chip bacteria growth based on the absorption measurement with a low limit of detection. Because of the small height of microfluidic channels, a standard optical density method is not applicable. In our approach, the optical path is 20 times longer by performing an in-plane optical density measurement compared to an out-of-plane approach so that the sensitivity is improved. An LED (580 nm center wavelength) is used to propagate light through a sample in the measurement channel. The passing light intensity is measured at the outlet by a photodiode. The relation between the absorbed light and the bacteria concentration agrees well with the theory. A particular focus is laid on reproducible setup based on 3D-printed holders where external disturbances such as ambient light are minimized. In combination with the increased sensitivity, the limit of detection is only 1.5. 106bac/mL. By applying the method of this contribution, additional standard laboratory operations can be integrated into chips.