Modelling Skewed and Heavy-tailed Data Using a Normal Weighted Inverse Gaussian Distribution

Calvin B. Maina, P. Weke, C. Ogutu, J. Ottieno
{"title":"Modelling Skewed and Heavy-tailed Data Using a Normal Weighted Inverse Gaussian Distribution","authors":"Calvin B. Maina, P. Weke, C. Ogutu, J. Ottieno","doi":"10.16929/as/20212.3165.300","DOIUrl":null,"url":null,"abstract":"The normal distribution is inadequate in capturing skewed and heavy-tailed behaviour of data taken over short time intervals. In addition the data can be leptokurtic. For this reason a normal weighted inverse Gaussian distribution is proposed as an alternative to the normal inverse Gaussian distribution to handle such data. The mixing distribution used in the normal variance mean mixture is a finite mixture of two special cases of Generalized Inverse Gaussian \\((\\textit{GIG})\\) distribution. The two special cases and the finite mixture are weighted inverse Gaussian distribution. The motivation for this work is that a finite mixture is more flexible than a single/standard distribution. The \\(textit{EM}\\)-algorithm has been used for parameter estimation.","PeriodicalId":430341,"journal":{"name":"Afrika Statistika","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/as/20212.3165.300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The normal distribution is inadequate in capturing skewed and heavy-tailed behaviour of data taken over short time intervals. In addition the data can be leptokurtic. For this reason a normal weighted inverse Gaussian distribution is proposed as an alternative to the normal inverse Gaussian distribution to handle such data. The mixing distribution used in the normal variance mean mixture is a finite mixture of two special cases of Generalized Inverse Gaussian \((\textit{GIG})\) distribution. The two special cases and the finite mixture are weighted inverse Gaussian distribution. The motivation for this work is that a finite mixture is more flexible than a single/standard distribution. The \(textit{EM}\)-algorithm has been used for parameter estimation.
用正态加权高斯反分布对偏态和重尾数据建模
正态分布不足以捕捉在短时间间隔内采集的数据的偏态和重尾行为。此外,数据可以是细峰的。由于这个原因,一个正态加权高斯反分布被提议作为一个替代正态高斯反分布来处理这样的数据。正态方差均值混合中使用的混合分布是广义逆高斯\((\textit{GIG})\)分布的两种特殊情况的有限混合。两种特殊情况和有限混合是加权逆高斯分布。这项工作的动机是,有限混合比单一/标准分布更灵活。使用\(textit{EM}\) -算法进行参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信