CMOS realization of a 2-layer CNN universal machine chip

R. Carmona-Galán, F. Jiménez-Garrido, R. Domínguez-Castro, S. Espejo-Meana, Á. Rodríguez-Vázquez
{"title":"CMOS realization of a 2-layer CNN universal machine chip","authors":"R. Carmona-Galán, F. Jiménez-Garrido, R. Domínguez-Castro, S. Espejo-Meana, Á. Rodríguez-Vázquez","doi":"10.1109/CNNA.2002.1035082","DOIUrl":null,"url":null,"abstract":"Some of the features of the biological retina can be modelled by a cellular neural network (CNN) composed of two dynamically coupled layers of locally connected elementary nonlinear processors. In order to explore the possibilities of these complex spatio-temporal dynamics in image processing, a prototype chip has been developed by implementing this CNN model with analog signal processing blocks. This chip has been designed in a 0.5/spl mu/m CMOS technology. Design challenges, trade-offs and the building blocks of such a high-complexity system (0.5 /spl times/ 10/sup 6/ transistors, most of them operating in analog mode) are presented in this paper.","PeriodicalId":387716,"journal":{"name":"Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2002.1035082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Some of the features of the biological retina can be modelled by a cellular neural network (CNN) composed of two dynamically coupled layers of locally connected elementary nonlinear processors. In order to explore the possibilities of these complex spatio-temporal dynamics in image processing, a prototype chip has been developed by implementing this CNN model with analog signal processing blocks. This chip has been designed in a 0.5/spl mu/m CMOS technology. Design challenges, trade-offs and the building blocks of such a high-complexity system (0.5 /spl times/ 10/sup 6/ transistors, most of them operating in analog mode) are presented in this paper.
一种2层CNN通用机芯片的CMOS实现
生物视网膜的一些特征可以通过由两个局部连接的基本非线性处理器动态耦合层组成的细胞神经网络(CNN)来建模。为了探索这些复杂的时空动态在图像处理中的可能性,通过使用模拟信号处理模块实现该CNN模型,开发了一个原型芯片。该芯片采用0.5/spl μ m CMOS工艺设计。本文介绍了这种高复杂性系统(0.5 /spl次/ 10/sup 6/个晶体管,其中大多数工作在模拟模式)的设计挑战,权衡和构建模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信