Root-loci for periodic linear systems

J. Zhu, S. Vemula
{"title":"Root-loci for periodic linear systems","authors":"J. Zhu, S. Vemula","doi":"10.1109/SSST.1993.522848","DOIUrl":null,"url":null,"abstract":"According to the Floquet theory, an nth-order linear periodic (LP) system of the form y/sup n/+/spl alpha//sub n/(t) y/sup n-1/+...+/spl alpha//sub 2/(t)dy(t)/dt+/spl alpha//sub 1/(t)y=0 can be transformed into an equivalent linear time-invariant (LTI) system whose characteristic roots, known as Floquet characteristic exponents (FCEs), determine the stability of the LP system. A technique for obtaining an approximation of the characteristic equation for the FCEs is developed. Parametric loci of the FCE, similar to the root locus plot for a LTI system, are then developed for the LP system. The technique is exemplified by 2nd-order LP systems. The FCE loci are useful in the stability analysis and control design for LP systems.","PeriodicalId":260036,"journal":{"name":"1993 (25th) Southeastern Symposium on System Theory","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 (25th) Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1993.522848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

According to the Floquet theory, an nth-order linear periodic (LP) system of the form y/sup n/+/spl alpha//sub n/(t) y/sup n-1/+...+/spl alpha//sub 2/(t)dy(t)/dt+/spl alpha//sub 1/(t)y=0 can be transformed into an equivalent linear time-invariant (LTI) system whose characteristic roots, known as Floquet characteristic exponents (FCEs), determine the stability of the LP system. A technique for obtaining an approximation of the characteristic equation for the FCEs is developed. Parametric loci of the FCE, similar to the root locus plot for a LTI system, are then developed for the LP system. The technique is exemplified by 2nd-order LP systems. The FCE loci are useful in the stability analysis and control design for LP systems.
周期线性系统的根轨迹
根据Floquet理论,一个形式为y/sup n/+/spl alpha//sub n/(t) y/sup n-1/+的n阶线性周期(LP)系统+/spl alpha//sub 2/(t)dy(t)/dt+/spl alpha//sub 1/(t)y=0可以转化为一个等效的线性时不变(LTI)系统,其特征根,称为Floquet特征指数(fce),决定了LP系统的稳定性。提出了一种求解fce特征方程近似的方法。FCE的参数轨迹,类似于LTI系统的根轨迹图,然后被开发用于LP系统。该方法以二阶LP系统为例进行了验证。FCE基因座在LP系统的稳定性分析和控制设计中是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信