Specialized algorithm for identification of stable linear systems using Lagrangian relaxation

Jack Umenberger, I. Manchester
{"title":"Specialized algorithm for identification of stable linear systems using Lagrangian relaxation","authors":"Jack Umenberger, I. Manchester","doi":"10.1109/ACC.2016.7525034","DOIUrl":null,"url":null,"abstract":"Recently Lagrangian relaxation has been used to generate convex approximations of the challenging simulation error minimization problem arising in system identification. In this paper, we present a specialized algorithm to optimize the convex bounds generated by Lagrangian relaxation, applicable to linear state-space models. The algorithm demonstrates superior scalability over general-purpose semidefinite programming solvers. In addition, we show empirically that Lagrangian relaxation is more resilient to a biasing effect commonly observed in other identification methods that guarantee model stability.","PeriodicalId":137983,"journal":{"name":"2016 American Control Conference (ACC)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2016.7525034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Recently Lagrangian relaxation has been used to generate convex approximations of the challenging simulation error minimization problem arising in system identification. In this paper, we present a specialized algorithm to optimize the convex bounds generated by Lagrangian relaxation, applicable to linear state-space models. The algorithm demonstrates superior scalability over general-purpose semidefinite programming solvers. In addition, we show empirically that Lagrangian relaxation is more resilient to a biasing effect commonly observed in other identification methods that guarantee model stability.
利用拉格朗日松弛辨识稳定线性系统的专门算法
近年来,拉格朗日松弛法被用于求解系统辨识中具有挑战性的仿真误差最小化问题的凸逼近。在本文中,我们提出了一种专门的算法来优化由拉格朗日松弛产生的凸界,适用于线性状态空间模型。与一般半定规划求解器相比,该算法具有优越的可扩展性。此外,我们的经验表明,拉格朗日弛豫对其他保证模型稳定性的识别方法中常见的偏倚效应更有弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信