Deep Stacked Auto-Encoder Network Based Tool Wear Monitoring in the Face Milling Process

V. Nguyen, V. Nguyen, V. Pham
{"title":"Deep Stacked Auto-Encoder Network Based Tool Wear Monitoring in the Face Milling Process","authors":"V. Nguyen, V. Nguyen, V. Pham","doi":"10.5545/sv-jme.2019.6285","DOIUrl":null,"url":null,"abstract":"Tool wear identification plays an important role in improving product quality and productivity in the manufacturing industry. The actual tool wear status with input cutting parameters may cause different levels of spindle vibration during the machining process. This research proposes an architecture comprising a deep learning network (DLN) to identify the actual wear state of machining tool. Firstly, data on spindle vibration signals are obtained from an acceleration sensor. The data are then pre-processed using the fast Fourier transform (FFT) method to reveal the relevant outstanding features in the frequency domain. Finally, the DLN is constructed based on stacked auto-encoders (SAE) and softmax, which is trained with the input data on the vibration features of the respective tool wear state. This DLN architecture is then used to identify the actual wear statuses of machining tool. The experimental results from the collected data show that the proposed DLN architecture is capable of identifying actual tool wear with high accuracy.","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniški vestnik – Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5545/sv-jme.2019.6285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Tool wear identification plays an important role in improving product quality and productivity in the manufacturing industry. The actual tool wear status with input cutting parameters may cause different levels of spindle vibration during the machining process. This research proposes an architecture comprising a deep learning network (DLN) to identify the actual wear state of machining tool. Firstly, data on spindle vibration signals are obtained from an acceleration sensor. The data are then pre-processed using the fast Fourier transform (FFT) method to reveal the relevant outstanding features in the frequency domain. Finally, the DLN is constructed based on stacked auto-encoders (SAE) and softmax, which is trained with the input data on the vibration features of the respective tool wear state. This DLN architecture is then used to identify the actual wear statuses of machining tool. The experimental results from the collected data show that the proposed DLN architecture is capable of identifying actual tool wear with high accuracy.
基于深度堆叠自编码器网络的面铣削过程刀具磨损监测
刀具磨损识别在制造业中对提高产品质量和生产效率起着重要的作用。在切削加工过程中,输入切削参数的实际刀具磨损状态会引起不同程度的主轴振动。本研究提出了一种包含深度学习网络(DLN)的结构来识别加工刀具的实际磨损状态。首先,从加速度传感器获取主轴振动信号数据。然后使用快速傅里叶变换(FFT)方法对数据进行预处理,以揭示频域中相关的突出特征。最后,基于堆叠自编码器(SAE)和softmax构建DLN,并使用输入数据对各自刀具磨损状态的振动特征进行训练。然后使用该DLN结构来识别机床的实际磨损状态。实验结果表明,所提出的DLN结构能够以较高的精度识别刀具的实际磨损。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信