Revisiting the Efficiency of UGC Video Quality Assessment

Yilin Wang, Joong Gon Yim, N. Birkbeck, Junjie Ke, Hossein Talebi, Xi Chen, Feng Yang, Balu Adsumilli
{"title":"Revisiting the Efficiency of UGC Video Quality Assessment","authors":"Yilin Wang, Joong Gon Yim, N. Birkbeck, Junjie Ke, Hossein Talebi, Xi Chen, Feng Yang, Balu Adsumilli","doi":"10.1109/ICIP46576.2022.9897401","DOIUrl":null,"url":null,"abstract":"UGC video quality assessment (UGC-VQA) is a challenging research topic due to the high video diversity and limited public UGC quality datasets. State-of-the-art (SOTA) UGC quality models tend to use high complexity models, and rarely discuss the trade-off among complexity, accuracy, and generalizability. We propose a new perspective on UGC-VQA, and show that model complexity may not be critical to the performance, whereas a more diverse dataset is essential to train a better model. We illustrate this by using a light weight model, UVQ-lite, which has higher efficiency and better generalizability (less overfitting) than baseline SOTA models. We also propose a new way to analyze the sufficiency of the training set, by leveraging UVQ’s comprehensive features. Our results motivate a new perspective about the future of UGC-VQA research, which we believe is headed toward more efficient models and more diverse datasets.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

UGC video quality assessment (UGC-VQA) is a challenging research topic due to the high video diversity and limited public UGC quality datasets. State-of-the-art (SOTA) UGC quality models tend to use high complexity models, and rarely discuss the trade-off among complexity, accuracy, and generalizability. We propose a new perspective on UGC-VQA, and show that model complexity may not be critical to the performance, whereas a more diverse dataset is essential to train a better model. We illustrate this by using a light weight model, UVQ-lite, which has higher efficiency and better generalizability (less overfitting) than baseline SOTA models. We also propose a new way to analyze the sufficiency of the training set, by leveraging UVQ’s comprehensive features. Our results motivate a new perspective about the future of UGC-VQA research, which we believe is headed toward more efficient models and more diverse datasets.
检讨UGC视频质素评估的效率
UGC视频质量评估(UGC- vqa)是一个具有挑战性的研究课题,因为视频多样性高,公开的UGC质量数据集有限。最先进的(SOTA) UGC质量模型倾向于使用高复杂性模型,很少讨论复杂性、准确性和泛化性之间的权衡。我们提出了UGC-VQA的新视角,并表明模型复杂性可能不是性能的关键,而更多样化的数据集对于训练更好的模型至关重要。我们通过使用轻量级模型UVQ-lite来说明这一点,该模型比基线SOTA模型具有更高的效率和更好的泛化性(更少的过拟合)。我们还提出了一种新的方法来分析训练集的充分性,利用UVQ的综合特征。我们的研究结果激发了对UGC-VQA研究未来的新视角,我们相信这将朝着更有效的模型和更多样化的数据集发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信