{"title":"GNN-GM: A Proactive Caching Scheme for Named Data Networking","authors":"Jiacheng Hou, Haoye Lu, A. Nayak","doi":"10.1109/ICCWorkshops53468.2022.9882153","DOIUrl":null,"url":null,"abstract":"As people spend more time watching movies and sharing videos online, it is crucial to provide users with a satisfactory quality of experience (QoE). With the help of the in-network caching feature in named data networking (NDN), our paper aims to improve user experience through caching. We propose a graph neural network-gain maximization (GNN-GM) cache placement algorithm. First, we use a GNN model to predict users’ ratings of unviewed videos. Second, we consider the total predicted rating of a video as the gain of caching the video. Third, we propose a cache placement algorithm to maximize the caching gains and proactively cache videos. We also design a caching replacement strategy based on the gain of caching the video. We utilize a real-world dataset to evaluate our caching strategy. Compared to state-of-the-art caching approaches, experimental results show that our caching policy improves cache hit rate by 25%, reduces latency by 5%, and reduces server load by 7%.","PeriodicalId":102261,"journal":{"name":"2022 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWorkshops53468.2022.9882153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
As people spend more time watching movies and sharing videos online, it is crucial to provide users with a satisfactory quality of experience (QoE). With the help of the in-network caching feature in named data networking (NDN), our paper aims to improve user experience through caching. We propose a graph neural network-gain maximization (GNN-GM) cache placement algorithm. First, we use a GNN model to predict users’ ratings of unviewed videos. Second, we consider the total predicted rating of a video as the gain of caching the video. Third, we propose a cache placement algorithm to maximize the caching gains and proactively cache videos. We also design a caching replacement strategy based on the gain of caching the video. We utilize a real-world dataset to evaluate our caching strategy. Compared to state-of-the-art caching approaches, experimental results show that our caching policy improves cache hit rate by 25%, reduces latency by 5%, and reduces server load by 7%.