Polyp Activity Estimation and Monitoring for Cold Water Corals with a Deep Learning Approach

Jonas Osterloff, I. Nilssen, Johanna Jarnegren, P. Buhl-Mortensen, T. Nattkemper
{"title":"Polyp Activity Estimation and Monitoring for Cold Water Corals with a Deep Learning Approach","authors":"Jonas Osterloff, I. Nilssen, Johanna Jarnegren, P. Buhl-Mortensen, T. Nattkemper","doi":"10.1109/CVAUI.2016.013","DOIUrl":null,"url":null,"abstract":"Fixed underwater observatories (FUOs) equipped with a variety of sensors including cameras, allow long-term monitoring with a high temporal resolution of a limited area of interest. FUOs equipped with HD cameras enable in situ monitoring of biological activity, such as live cold-water corals on a level of detail down to individual polyps. We present a workflow which allows monitoring the activity of cold water coral polyps automatically from photos recorded at the FUO LoVe (Lofoten - Vesterålen). The workflow consists of three steps: First the manual polyp activity-level identification, carried out by three observers on a region of interest in 13 images to generate a gold standard. Second, the training of a convolutional neural network (CNN) on the gold standard to automate the polyp activity classification. Third, the computational activity classification is integrated into an algorithmic estimation of polyp activity in a region of interest. We present results obtained for an image series from April to November 2015 that shows interesting temporal behavior patterns correlating with other posterior measurements.","PeriodicalId":169345,"journal":{"name":"2016 ICPR 2nd Workshop on Computer Vision for Analysis of Underwater Imagery (CVAUI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ICPR 2nd Workshop on Computer Vision for Analysis of Underwater Imagery (CVAUI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVAUI.2016.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Fixed underwater observatories (FUOs) equipped with a variety of sensors including cameras, allow long-term monitoring with a high temporal resolution of a limited area of interest. FUOs equipped with HD cameras enable in situ monitoring of biological activity, such as live cold-water corals on a level of detail down to individual polyps. We present a workflow which allows monitoring the activity of cold water coral polyps automatically from photos recorded at the FUO LoVe (Lofoten - Vesterålen). The workflow consists of three steps: First the manual polyp activity-level identification, carried out by three observers on a region of interest in 13 images to generate a gold standard. Second, the training of a convolutional neural network (CNN) on the gold standard to automate the polyp activity classification. Third, the computational activity classification is integrated into an algorithmic estimation of polyp activity in a region of interest. We present results obtained for an image series from April to November 2015 that shows interesting temporal behavior patterns correlating with other posterior measurements.
基于深度学习方法的冷水珊瑚水螅活动估计与监测
固定水下观测站(FUOs)配备了包括摄像机在内的各种传感器,可以对有限的感兴趣区域进行高时间分辨率的长期监测。配备高清摄像机的fuo可以现场监测生物活动,例如活的冷水珊瑚,详细到单个珊瑚虫。我们提出了一种工作流程,可以自动监测冷水珊瑚珊瑚虫的活动,这些活动是由在Lofoten - vester len的FUO LoVe拍摄的照片记录的。该工作流程包括三个步骤:首先是手动息肉活动水平识别,由三名观察员在13张图像中对感兴趣的区域进行识别,以生成金标准。其次,训练一个基于黄金标准的卷积神经网络(CNN)来实现对息肉活动的自动分类。第三,将计算活动分类集成到感兴趣区域息肉活动的算法估计中。我们展示了2015年4月至11月的一系列图像的结果,显示了与其他后验测量相关的有趣的时间行为模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信