Scaling the ISAM Land Surface Model through Parallelization of Inter-component Data Transfer

P. Miller, Michael P. Robson, B. El-Masri, R. Barman, G. Zheng, Atul K. Jain, L. Kalé
{"title":"Scaling the ISAM Land Surface Model through Parallelization of Inter-component Data Transfer","authors":"P. Miller, Michael P. Robson, B. El-Masri, R. Barman, G. Zheng, Atul K. Jain, L. Kalé","doi":"10.1109/ICPP.2014.51","DOIUrl":null,"url":null,"abstract":"We present the progression of developments necessary to scale the ISAM landsurface model from single nodes and small clusters with unusually largeper-node memory to much larger systems with more common configurations. These efforts include load balancing, conventional library-based output parallelization to reduce memory load, and parallel-in-time data input. On Hopper, a Cray XE6 machine, the result was strong scaling from 256 cores to 16k coreswith an efficiency of 32.9%. On Edison, a Cray XC30 machine, the code strong scales from 256 cores to 16k cores with an efficiency of 51.4%. These large-scale gains, and the associated performance increases at smaller scale, enable greater scientific productivity for the users of ISAM and open the possibilities of increased resolution in time and space and greater physical fidelity for the simulated processes while remaining computationally feasible.","PeriodicalId":441115,"journal":{"name":"2014 43rd International Conference on Parallel Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 43rd International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2014.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present the progression of developments necessary to scale the ISAM landsurface model from single nodes and small clusters with unusually largeper-node memory to much larger systems with more common configurations. These efforts include load balancing, conventional library-based output parallelization to reduce memory load, and parallel-in-time data input. On Hopper, a Cray XE6 machine, the result was strong scaling from 256 cores to 16k coreswith an efficiency of 32.9%. On Edison, a Cray XC30 machine, the code strong scales from 256 cores to 16k cores with an efficiency of 51.4%. These large-scale gains, and the associated performance increases at smaller scale, enable greater scientific productivity for the users of ISAM and open the possibilities of increased resolution in time and space and greater physical fidelity for the simulated processes while remaining computationally feasible.
基于组件间数据传输并行化的ISAM地表模型缩放
我们介绍了将ISAM陆地模型从单节点和具有异常大节点内存的小集群扩展到具有更常见配置的更大系统所需的发展进展。这些努力包括负载平衡、传统的基于库的输出并行化(以减少内存负载)和实时并行数据输入。在Hopper(一台Cray XE6机器)上,结果是从256核扩展到16k核,效率达到32.9%。在Edison,一台Cray XC30机器上,代码强度从256核扩展到16k核,效率为51.4%。这些大规模的收益,以及在较小规模上的相关性能提高,为ISAM用户提供了更高的科学生产力,并为模拟过程提供了在时间和空间上提高分辨率和更高物理保真度的可能性,同时保持了计算上的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信