Modified Convolutional Network for the Identification of Covid-19 with a Mobile System

Jzau-Sheng Lin, Fang Shen An, Li Cheng Ze
{"title":"Modified Convolutional Network for the Identification of Covid-19 with a Mobile System","authors":"Jzau-Sheng Lin, Fang Shen An, Li Cheng Ze","doi":"10.1109/SNPD51163.2021.9705004","DOIUrl":null,"url":null,"abstract":"In this paper, we modified a low-cost and rapid method to detect chest X-rays based on MobileNet. Because MobileNet is a lightweight neural network, we modified and optimized backpropagation learning to train the model. In the subsequent COVID-19, pneumonia, and normal tests, the recognition accuracy reached 99.14%, which greatly improved the performance of the model. Our scheme can produce an effective model suitable for low-performance mobile devices.","PeriodicalId":235370,"journal":{"name":"2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD51163.2021.9705004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we modified a low-cost and rapid method to detect chest X-rays based on MobileNet. Because MobileNet is a lightweight neural network, we modified and optimized backpropagation learning to train the model. In the subsequent COVID-19, pneumonia, and normal tests, the recognition accuracy reached 99.14%, which greatly improved the performance of the model. Our scheme can produce an effective model suitable for low-performance mobile devices.
基于移动系统的新型冠状病毒识别改进卷积网络
在本文中,我们改进了一种基于MobileNet的低成本、快速的胸部x射线检测方法。由于MobileNet是一个轻量级的神经网络,我们修改和优化了反向传播学习来训练模型。在随后的COVID-19、肺炎和正常测试中,识别准确率达到99.14%,大大提高了模型的性能。我们的方案可以产生一个适用于低性能移动设备的有效模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信