Yasser Fadlallah, A. Aïssa-El-Bey, K. Amis, Dominique Pastor
{"title":"Low-complexity detector for very large and massive MIMO transmission","authors":"Yasser Fadlallah, A. Aïssa-El-Bey, K. Amis, Dominique Pastor","doi":"10.1109/SPAWC.2015.7227038","DOIUrl":null,"url":null,"abstract":"Maximum-Likelihood (ML) joint detection has been proposed as an optimal strategy that detects simultaneously the transmitted signals. In very large multiple-input-multiple output (MIMO) systems, the ML detector becomes intractable due the computational cost that increases exponentially with the antenna dimensions. In this paper, we propose a relaxed ML detector based on an iterative decoding strategy that reduces the computational cost. We exploit the fact that the transmit constellation is discrete, and remodel the channel as a MIMO channel with sparse input belonging to the binary set {0, 1}. The sparsity property allows us to relax the ML problem as a quadratic minimization under linear and ℓ1-norm constraint. We then prove the equivalence of the relaxed problem to a convex optimization problem solvable in polynomial time. Simulation results illustrate the efficiency of the low-complexity proposed detector compared to other existing ones in very large and massive MIMO context.","PeriodicalId":211324,"journal":{"name":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2015.7227038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Maximum-Likelihood (ML) joint detection has been proposed as an optimal strategy that detects simultaneously the transmitted signals. In very large multiple-input-multiple output (MIMO) systems, the ML detector becomes intractable due the computational cost that increases exponentially with the antenna dimensions. In this paper, we propose a relaxed ML detector based on an iterative decoding strategy that reduces the computational cost. We exploit the fact that the transmit constellation is discrete, and remodel the channel as a MIMO channel with sparse input belonging to the binary set {0, 1}. The sparsity property allows us to relax the ML problem as a quadratic minimization under linear and ℓ1-norm constraint. We then prove the equivalence of the relaxed problem to a convex optimization problem solvable in polynomial time. Simulation results illustrate the efficiency of the low-complexity proposed detector compared to other existing ones in very large and massive MIMO context.