Survey on WSN Using Clustering

S. Dhiviya, A. Sariga, P. Sujatha
{"title":"Survey on WSN Using Clustering","authors":"S. Dhiviya, A. Sariga, P. Sujatha","doi":"10.1109/ICRTCCM.2017.87","DOIUrl":null,"url":null,"abstract":"Clustering algorithm incurs significantenergy consumption for clusters and its ClusterHeads (CH) in Wireless Sensor Network(WSN). WSN brings a new attention over a real-timeintelligent system with its limitations and gainedmore research challenges. In last few years, WSNcan be used and seen in many real time applicationslike disaster management, pollution monitoring, temperature monitoring, traffic monitoring, transportmonitoring, healthcare monitoring, battlefieldsurveillance and border security surveillance. Inthese applications, plenty of sensor nodes are usedand they are deployed in the sensing field whichoften transmits information to Base Station (BS) automatically by means of energy (i.e. battery presentin the sensor). Clustering is one of the techniquesused in WSN to utilize the energy efficiently by thesensor node. Clustering is a process of grouping thesensor nodes into clusters and each cluster will havea cluster head. This paper provides the survey on adistinct clustering algorithm for WSN which isclassified based on distinct clustering attributes.","PeriodicalId":134897,"journal":{"name":"2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTCCM.2017.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Clustering algorithm incurs significantenergy consumption for clusters and its ClusterHeads (CH) in Wireless Sensor Network(WSN). WSN brings a new attention over a real-timeintelligent system with its limitations and gainedmore research challenges. In last few years, WSNcan be used and seen in many real time applicationslike disaster management, pollution monitoring, temperature monitoring, traffic monitoring, transportmonitoring, healthcare monitoring, battlefieldsurveillance and border security surveillance. Inthese applications, plenty of sensor nodes are usedand they are deployed in the sensing field whichoften transmits information to Base Station (BS) automatically by means of energy (i.e. battery presentin the sensor). Clustering is one of the techniquesused in WSN to utilize the energy efficiently by thesensor node. Clustering is a process of grouping thesensor nodes into clusters and each cluster will havea cluster head. This paper provides the survey on adistinct clustering algorithm for WSN which isclassified based on distinct clustering attributes.
基于聚类的WSN研究综述
在无线传感器网络(WSN)中,聚类算法对簇及其簇头(CH)产生了巨大的能量消耗。无线传感器网络以其自身的局限性引起了人们对实时智能系统的关注,并面临着更多的研究挑战。在过去的几年中,wsnn可以用于许多实时应用,如灾害管理、污染监测、温度监测、交通监测、运输监测、医疗监测、战场监视和边境安全监视。在这些应用中,使用了大量的传感器节点,它们被部署在传感领域,通常通过能量(即传感器中的电池)自动将信息传输到基站(BS)。聚类是无线传感器网络中用于有效利用传感器节点能量的技术之一。聚类是将这些传感器节点分组成簇的过程,每个簇将有一个簇头。本文综述了基于不同聚类属性对WSN进行分类的不同聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信