Bayesian Inference In CO2 Storage Monitoring: A Way To Assess Uncertainties In Geophysical Inversions

B. Dupuy, A. Romdhane, P. Eliasson
{"title":"Bayesian Inference In CO2 Storage Monitoring: A Way To Assess Uncertainties In Geophysical Inversions","authors":"B. Dupuy, A. Romdhane, P. Eliasson","doi":"10.3997/2214-4609.201803005","DOIUrl":null,"url":null,"abstract":"Summary We present an integrated methodology for quantitative CO2 monitoring using Bayesian formulation. A first step consists in full-waveform inversion and CSEM inversion solved with gradient-based inverse methods. Uncertainty assessment is then carried out using a posteriori covariance matrix analysis to derive velocity and resistivity maps with uncertainty. Then, rock physics inversion is done with semi-global optimisation methodology and uncertainty is propagated with Bayesian formulation to quantify the reliability of the final CO2 saturation estimates.","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth CO2 Geological Storage Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201803005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary We present an integrated methodology for quantitative CO2 monitoring using Bayesian formulation. A first step consists in full-waveform inversion and CSEM inversion solved with gradient-based inverse methods. Uncertainty assessment is then carried out using a posteriori covariance matrix analysis to derive velocity and resistivity maps with uncertainty. Then, rock physics inversion is done with semi-global optimisation methodology and uncertainty is propagated with Bayesian formulation to quantify the reliability of the final CO2 saturation estimates.
二氧化碳储存监测中的贝叶斯推断:一种评估地球物理反演不确定性的方法
我们提出了一种使用贝叶斯公式进行定量二氧化碳监测的综合方法。第一步是全波形反演和基于梯度的反演方法求解CSEM反演。然后使用后验协方差矩阵分析进行不确定性评估,以导出具有不确定性的速度和电阻率图。然后,使用半全局优化方法进行岩石物理反演,并使用贝叶斯公式传播不确定性,以量化最终CO2饱和度估计的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信