{"title":"Bayesian Inference In CO2 Storage Monitoring: A Way To Assess Uncertainties In Geophysical Inversions","authors":"B. Dupuy, A. Romdhane, P. Eliasson","doi":"10.3997/2214-4609.201803005","DOIUrl":null,"url":null,"abstract":"Summary We present an integrated methodology for quantitative CO2 monitoring using Bayesian formulation. A first step consists in full-waveform inversion and CSEM inversion solved with gradient-based inverse methods. Uncertainty assessment is then carried out using a posteriori covariance matrix analysis to derive velocity and resistivity maps with uncertainty. Then, rock physics inversion is done with semi-global optimisation methodology and uncertainty is propagated with Bayesian formulation to quantify the reliability of the final CO2 saturation estimates.","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth CO2 Geological Storage Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201803005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Summary We present an integrated methodology for quantitative CO2 monitoring using Bayesian formulation. A first step consists in full-waveform inversion and CSEM inversion solved with gradient-based inverse methods. Uncertainty assessment is then carried out using a posteriori covariance matrix analysis to derive velocity and resistivity maps with uncertainty. Then, rock physics inversion is done with semi-global optimisation methodology and uncertainty is propagated with Bayesian formulation to quantify the reliability of the final CO2 saturation estimates.