Multidimensional Scaling for Gene Sequence Data with Autoencoders

P. Wickramasinghe, G. Fox
{"title":"Multidimensional Scaling for Gene Sequence Data with Autoencoders","authors":"P. Wickramasinghe, G. Fox","doi":"10.1109/CDS52072.2021.00095","DOIUrl":null,"url":null,"abstract":"Multidimensional scaling of gene sequence data has long played a vital role in analysing gene sequence data to identify clusters and patterns. However the computation complexities and memory requirements of state-of-the-art dimensional scaling algorithms make it infeasible to scale to large datasets. In this paper we present an autoencoder-based dimensional reduction model which can easily scale to datasets containing millions of gene sequences, while attaining results comparable to state-of-the-art MDS algorithms with minimal resource requirements. The model also supports out-of-sample data points with a 99.5%+ accuracy based on our experiments. The proposed model is evaluated against DAMDS with a real world fungi gene sequence dataset. The presented results showcase the effectiveness of the autoencoder-based dimension reduction model and its advantages.","PeriodicalId":380426,"journal":{"name":"2021 2nd International Conference on Computing and Data Science (CDS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Computing and Data Science (CDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDS52072.2021.00095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multidimensional scaling of gene sequence data has long played a vital role in analysing gene sequence data to identify clusters and patterns. However the computation complexities and memory requirements of state-of-the-art dimensional scaling algorithms make it infeasible to scale to large datasets. In this paper we present an autoencoder-based dimensional reduction model which can easily scale to datasets containing millions of gene sequences, while attaining results comparable to state-of-the-art MDS algorithms with minimal resource requirements. The model also supports out-of-sample data points with a 99.5%+ accuracy based on our experiments. The proposed model is evaluated against DAMDS with a real world fungi gene sequence dataset. The presented results showcase the effectiveness of the autoencoder-based dimension reduction model and its advantages.
基于自编码器的基因序列数据多维缩放
长期以来,基因序列数据的多维尺度分析在分析基因序列数据以识别聚类和模式方面起着至关重要的作用。然而,最先进的维度缩放算法的计算复杂性和内存需求使得它无法扩展到大型数据集。在本文中,我们提出了一个基于自编码器的降维模型,该模型可以很容易地扩展到包含数百万个基因序列的数据集,同时以最小的资源需求获得与最先进的MDS算法相当的结果。根据我们的实验,该模型还支持99.5%以上的样本外数据点。提出的模型与真实世界真菌基因序列数据集的DAMDS进行了评估。实验结果表明了基于自编码器的降维模型的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信