Writer Identification Using Steered Hermite Features and SVM

A. Imdad, S. Bres, V. Eglin, C. Rivero-Moreno, H. Emptoz
{"title":"Writer Identification Using Steered Hermite Features and SVM","authors":"A. Imdad, S. Bres, V. Eglin, C. Rivero-Moreno, H. Emptoz","doi":"10.1109/ICDAR.2007.271","DOIUrl":null,"url":null,"abstract":"Writer recognition is considered as a difficult problem to solve due to variations found in the writing, even from the same writer. In this paper, steered Hermite features are used to identify writer from a written document. We will show that steered Hermite features are highly useful for text images because they extract lot of information, notably for data characterized by oriented features, curves and segments. The algorithm we propose here, first calculates the steered Hermite features of the images which are then passed on to support vector machine for training and testing. The base of tests consists of sample of some lines of writings (five at most) of primarily diversified writings of authors from IAM database. With the proposed algorithm based on steered Hermite features, we were able to achieve an accuracy of around 83% percent for a set of 30 authors with non overlapping images of written text.","PeriodicalId":279268,"journal":{"name":"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2007.271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Writer recognition is considered as a difficult problem to solve due to variations found in the writing, even from the same writer. In this paper, steered Hermite features are used to identify writer from a written document. We will show that steered Hermite features are highly useful for text images because they extract lot of information, notably for data characterized by oriented features, curves and segments. The algorithm we propose here, first calculates the steered Hermite features of the images which are then passed on to support vector machine for training and testing. The base of tests consists of sample of some lines of writings (five at most) of primarily diversified writings of authors from IAM database. With the proposed algorithm based on steered Hermite features, we were able to achieve an accuracy of around 83% percent for a set of 30 authors with non overlapping images of written text.
基于导向赫米特特征和支持向量机的作家识别
作者识别被认为是一个难以解决的问题,因为在写作中发现了差异,甚至来自同一作者。在本文中,使用导向的埃尔米特特征从书面文件中识别作者。我们将展示导向Hermite特征对文本图像非常有用,因为它们提取了大量信息,特别是对于定向特征、曲线和片段特征的数据。我们在这里提出的算法,首先计算图像的导向Hermite特征,然后将其传递给支持向量机进行训练和测试。测试的基础包括来自IAM数据库的作者主要多样化的作品的一些行(最多五行)的样本。使用基于导向Hermite特征的算法,我们能够在一组30位作者的无重叠书面文本图像中实现83%左右的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信