The Use of Global Best Position in Rerun of Particle Swarm Optimization

Varothon Cheypoca, K. Siriboon, B. Kruatrachue
{"title":"The Use of Global Best Position in Rerun of Particle Swarm Optimization","authors":"Varothon Cheypoca, K. Siriboon, B. Kruatrachue","doi":"10.1109/ICEAST.2018.8434504","DOIUrl":null,"url":null,"abstract":"This paper studies the use of particle best position (GBEST) in rerun when particle swarm optimization (PSO) traps in local optima. Reinitialize particles positions are often used to restart PSO to get better results when trapping in local optima. This paper proposed the use of GBEST to further force particle movement out of previous local optima instead of only reset GBEST. The proposed method is tested on 26 benchmark test functions with satisfactory results.","PeriodicalId":138654,"journal":{"name":"2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAST.2018.8434504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper studies the use of particle best position (GBEST) in rerun when particle swarm optimization (PSO) traps in local optima. Reinitialize particles positions are often used to restart PSO to get better results when trapping in local optima. This paper proposed the use of GBEST to further force particle movement out of previous local optima instead of only reset GBEST. The proposed method is tested on 26 benchmark test functions with satisfactory results.
全局最优位置在粒子群优化算法中的应用
研究了粒子群算法陷入局部最优时,粒子最优位置(GBEST)在重新运行中的应用。重新初始化粒子位置通常用于重新启动粒子群算法,以便在陷入局部最优时获得更好的结果。本文提出利用GBEST进一步迫使粒子运动出先前的局部最优,而不是仅仅重置GBEST。该方法在26个基准测试函数上进行了测试,结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信