Pewarnaan Pelangi Antiajaib pada Amalgamasi Graf

Riniatul Nur Wahidah, Dafik Dafik, E.R Albirri
{"title":"Pewarnaan Pelangi Antiajaib pada Amalgamasi Graf","authors":"Riniatul Nur Wahidah, Dafik Dafik, E.R Albirri","doi":"10.25037/cgantjma.v3i1.76","DOIUrl":null,"url":null,"abstract":"Let $G$ is a connected graph with vertex set $V(G)$ and edge set $E(G)$. The side weights for $uv\\in E(G) $ bijective function $f:V(G)\\rightarrow\\{1,2,\\dots, |V(G)|\\}$ and $ w(uv)= f(u)+f(v) $ . If each edge has a different weight, the function $f$ is called an antimagic edge point labeling.  Is said to be a rainbow path, if a path $P$ on the graph labeled vertex $G$ with every two edges $ ,u'v'\\in E(P) $ fulfill  $ w(uv)\\neq w(u'v') $. If for every two vertices $u,v \\in V(G)$, their path $uv$ rainbow, $f$ is called the rainbow antimagic labeling of the graph $G$. Graph G is an antimagic coloring of the rainbow if we for each edge $uv$ weight color side  $w(uv)$. The smallest number of colors induced from all sides is the rainbow antimagic connection number $G$, denoted by $rac(G)$. This study shows the results of the rainbow antimagic connection number from amalgamation graph.","PeriodicalId":305608,"journal":{"name":"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25037/cgantjma.v3i1.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $G$ is a connected graph with vertex set $V(G)$ and edge set $E(G)$. The side weights for $uv\in E(G) $ bijective function $f:V(G)\rightarrow\{1,2,\dots, |V(G)|\}$ and $ w(uv)= f(u)+f(v) $ . If each edge has a different weight, the function $f$ is called an antimagic edge point labeling.  Is said to be a rainbow path, if a path $P$ on the graph labeled vertex $G$ with every two edges $ ,u'v'\in E(P) $ fulfill  $ w(uv)\neq w(u'v') $. If for every two vertices $u,v \in V(G)$, their path $uv$ rainbow, $f$ is called the rainbow antimagic labeling of the graph $G$. Graph G is an antimagic coloring of the rainbow if we for each edge $uv$ weight color side  $w(uv)$. The smallest number of colors induced from all sides is the rainbow antimagic connection number $G$, denoted by $rac(G)$. This study shows the results of the rainbow antimagic connection number from amalgamation graph.
设$G$是一个顶点集$V(G)$和边集$E(G)$的连通图。对于$uv\in E(G) $双射函数$f:V(G)\rightarrow\{1,2,\dots, |V(G)|\}$和$ w(uv)= f(u)+f(v) $的边权。如果每条边都有不同的权值,则该函数$f$称为反魔术边点标记。如果在标记为顶点$G$的图上有一条路径$P$每两条边$ ,u'v'\in E(P) $满足$ w(uv)\neq w(u'v') $,则称为彩虹路径。如果对于每两个顶点$u,v \in V(G)$,它们的路径$uv$彩虹,$f$被称为图$G$的彩虹反魔术标记。图G是彩虹的反魔法着色,如果我们对每条边$uv$权值着色边$w(uv)$。从所有方面诱导的最小颜色数是彩虹反魔连接数$G$,用$rac(G)$表示。本文给出了由合并图得到彩虹反魔连接数的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信