Bounding Box Stabilization for Visual Object Tracking Using Kalman and FIR Filters

Eli Pale-Ramon, Y. Shmaliy, L. Morales-Mendoza, M. González-Lee
{"title":"Bounding Box Stabilization for Visual Object Tracking Using Kalman and FIR Filters","authors":"Eli Pale-Ramon, Y. Shmaliy, L. Morales-Mendoza, M. González-Lee","doi":"10.37394/232014.2022.18.2","DOIUrl":null,"url":null,"abstract":"In visual object tracking, the estimation of the trajectory of a moving object is a widely studied problem. In the object tracking process, there are usually variations between the real position of the objet in the scene and the estimated position, that is, the object is not exactly followed throughout its trajectory. These variations can be considered as color measurement noise (CMN) caused by the object and the camera frame movement. In this paper, we treat such differences as Gauss-Markov coloring measurement noise. We use Finite Impulse Response filters and Kalman filter with a recursive strategy in tracking: predict and update. To demonstrate the best performance, tests were carried out with simulated trajectories and with benchmarks from a database available online. The OUFIR and UFIR algorithms showed favorable results with high precision and accuracy in the object tracking task.","PeriodicalId":305800,"journal":{"name":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232014.2022.18.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In visual object tracking, the estimation of the trajectory of a moving object is a widely studied problem. In the object tracking process, there are usually variations between the real position of the objet in the scene and the estimated position, that is, the object is not exactly followed throughout its trajectory. These variations can be considered as color measurement noise (CMN) caused by the object and the camera frame movement. In this paper, we treat such differences as Gauss-Markov coloring measurement noise. We use Finite Impulse Response filters and Kalman filter with a recursive strategy in tracking: predict and update. To demonstrate the best performance, tests were carried out with simulated trajectories and with benchmarks from a database available online. The OUFIR and UFIR algorithms showed favorable results with high precision and accuracy in the object tracking task.
用卡尔曼滤波器和FIR滤波器稳定视觉目标跟踪的边界盒
在视觉目标跟踪中,运动目标的轨迹估计是一个被广泛研究的问题。在物体跟踪过程中,物体在场景中的真实位置与估计位置之间通常存在差异,即物体在整个轨迹中没有被精确跟踪。这些变化可以被认为是由物体和相机帧运动引起的色彩测量噪声(CMN)。在本文中,我们将这种差异作为高斯-马尔可夫着色测量噪声来处理。我们使用有限脉冲响应滤波器和卡尔曼滤波器,并采用递归策略进行跟踪、预测和更新。为了展示最佳性能,使用模拟轨迹和在线数据库中的基准进行了测试。OUFIR和UFIR算法在目标跟踪任务中表现出较好的精度和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信